The Glorot normal initializer, also called Xavier normal initializer.
Source:R/initializers.R
initializer_glorot_normal.RdDraws samples from a truncated normal distribution centered on 0 with
stddev = sqrt(2 / (fan_in + fan_out)) where fan_in is the number of
input units in the weight tensor and fan_out is the number of output units
in the weight tensor.
Arguments
- seed
An integer or instance of
random_seed_generator(). Used to make the behavior of the initializer deterministic. Note that an initializer seeded with an integer orNULL(unseeded) will produce the same random values across multiple calls. To get different random values across multiple calls, use as seed an instance ofrandom_seed_generator().
Value
An Initializer instance that can be passed to layer or variable
constructors, or called directly with a shape to return a Tensor.
Examples
# Standalone usage:
initializer <- initializer_glorot_normal()
values <- initializer(shape = c(2, 2))# Usage in a Keras layer:
initializer <- initializer_glorot_normal()
layer <- layer_dense(units = 3, kernel_initializer = initializer)See also
Other random initializers: initializer_glorot_uniform() initializer_he_normal() initializer_he_uniform() initializer_lecun_normal() initializer_lecun_uniform() initializer_orthogonal() initializer_random_normal() initializer_random_uniform() initializer_truncated_normal() initializer_variance_scaling()
Other initializers: initializer_constant() initializer_glorot_uniform() initializer_he_normal() initializer_he_uniform() initializer_identity() initializer_lecun_normal() initializer_lecun_uniform() initializer_ones() initializer_orthogonal() initializer_random_normal() initializer_random_uniform() initializer_stft() initializer_truncated_normal() initializer_variance_scaling() initializer_zeros()