Function reference
-
keras_model_sequential() - Keras Model composed of a linear stack of layers
-
keras_model() - Keras Model (Functional API)
-
keras_input() - Create a Keras tensor (Functional API input).
-
clone_model() - Clone a Functional or Sequential
Modelinstance.
-
Model() - Subclass the base Keras
ModelClass
-
compile(<keras.src.models.model.Model>) - Configure a model for training.
-
fit(<keras.src.models.model.Model>) - Train a model for a fixed number of epochs (dataset iterations).
-
plot(<keras_training_history>) - Plot training history
-
predict(<keras.src.models.model.Model>) - Generates output predictions for the input samples.
-
evaluate(<keras.src.models.model.Model>) - Evaluate a Keras Model
-
train_on_batch() - Runs a single gradient update on a single batch of data.
-
predict_on_batch() - Returns predictions for a single batch of samples.
-
test_on_batch() - Test the model on a single batch of samples.
-
freeze_weights()unfreeze_weights() - Freeze and unfreeze weights
-
summary(<keras.src.models.model.Model>)format(<keras.src.models.model.Model>)print(<keras.src.models.model.Model>) - Print a summary of a Keras Model
-
plot(<keras.src.models.model.Model>) - Plot a Keras model
-
get_config()from_config() - Layer/Model configuration
-
get_weights()set_weights() - Layer/Model weights as R arrays
-
get_layer() - Retrieves a layer based on either its name (unique) or index.
-
count_params() - Count the total number of scalars composing the weights.
-
pop_layer() - Remove the last layer in a Sequential model
-
quantize_weights() - Quantize the weights of a model.
-
get_state_tree() - Retrieves tree-like structure of model variables.
-
set_state_tree() - Assigns values to variables of the model.
-
save_model() - Saves a model as a
.kerasfile.
-
load_model() - Loads a model saved via
save_model().
-
save_model_weights() - Saves all layer weights to a
.weights.h5file.
-
load_model_weights() - Load weights from a file saved via
save_model_weights().
-
save_model_config()load_model_config() - Save and load model configuration as JSON
-
export_savedmodel(<keras.src.models.model.Model>) - Export the model as an artifact for inference.
-
layer_tfsm() - Reload a Keras model/layer that was saved via
export_savedmodel().
-
register_keras_serializable() - Registers a custom object with the Keras serialization framework.
-
layer_dense() - Just your regular densely-connected NN layer.
-
layer_einsum_dense() - A layer that uses
einsumas the backing computation.
-
layer_embedding() - Turns nonnegative integers (indexes) into dense vectors of fixed size.
-
layer_identity() - Identity layer.
-
layer_lambda() - Wraps arbitrary expressions as a
Layerobject.
-
layer_masking() - Masks a sequence by using a mask value to skip timesteps.
-
layer_cropping_1d() - Cropping layer for 1D input (e.g. temporal sequence).
-
layer_cropping_2d() - Cropping layer for 2D input (e.g. picture).
-
layer_cropping_3d() - Cropping layer for 3D data (e.g. spatial or spatio-temporal).
-
layer_flatten() - Flattens the input. Does not affect the batch size.
-
layer_permute() - Permutes the dimensions of the input according to a given pattern.
-
layer_repeat_vector() - Repeats the input n times.
-
layer_reshape() - Layer that reshapes inputs into the given shape.
-
layer_upsampling_1d() - Upsampling layer for 1D inputs.
-
layer_upsampling_2d() - Upsampling layer for 2D inputs.
-
layer_upsampling_3d() - Upsampling layer for 3D inputs.
-
layer_zero_padding_1d() - Zero-padding layer for 1D input (e.g. temporal sequence).
-
layer_zero_padding_2d() - Zero-padding layer for 2D input (e.g. picture).
-
layer_zero_padding_3d() - Zero-padding layer for 3D data (spatial or spatio-temporal).
-
layer_conv_1d() - 1D convolution layer (e.g. temporal convolution).
-
layer_conv_1d_transpose() - 1D transposed convolution layer.
-
layer_conv_2d() - 2D convolution layer.
-
layer_conv_2d_transpose() - 2D transposed convolution layer.
-
layer_conv_3d() - 3D convolution layer.
-
layer_conv_3d_transpose() - 3D transposed convolution layer.
-
layer_depthwise_conv_1d() - 1D depthwise convolution layer.
-
layer_depthwise_conv_2d() - 2D depthwise convolution layer.
-
layer_separable_conv_1d() - 1D separable convolution layer.
-
layer_separable_conv_2d() - 2D separable convolution layer.
-
layer_average_pooling_1d() - Average pooling for temporal data.
-
layer_average_pooling_2d() - Average pooling operation for 2D spatial data.
-
layer_average_pooling_3d() - Average pooling operation for 3D data (spatial or spatio-temporal).
-
layer_global_average_pooling_1d() - Global average pooling operation for temporal data.
-
layer_global_average_pooling_2d() - Global average pooling operation for 2D data.
-
layer_global_average_pooling_3d() - Global average pooling operation for 3D data.
-
layer_global_max_pooling_1d() - Global max pooling operation for temporal data.
-
layer_global_max_pooling_2d() - Global max pooling operation for 2D data.
-
layer_global_max_pooling_3d() - Global max pooling operation for 3D data.
-
layer_max_pooling_1d() - Max pooling operation for 1D temporal data.
-
layer_max_pooling_2d() - Max pooling operation for 2D spatial data.
-
layer_max_pooling_3d() - Max pooling operation for 3D data (spatial or spatio-temporal).
-
layer_activation() - Applies an activation function to an output.
-
layer_activation_elu() - Applies an Exponential Linear Unit function to an output.
-
layer_activation_leaky_relu() - Leaky version of a Rectified Linear Unit activation layer.
-
layer_activation_parametric_relu() - Parametric Rectified Linear Unit activation layer.
-
layer_activation_relu() - Rectified Linear Unit activation function layer.
-
layer_activation_softmax() - Softmax activation layer.
-
layer_bidirectional() - Bidirectional wrapper for RNNs.
-
layer_conv_lstm_1d() - 1D Convolutional LSTM.
-
layer_conv_lstm_2d() - 2D Convolutional LSTM.
-
layer_conv_lstm_3d() - 3D Convolutional LSTM.
-
layer_gru() - Gated Recurrent Unit - Cho et al. 2014.
-
layer_lstm() - Long Short-Term Memory layer - Hochreiter 1997.
-
layer_rnn() - Base class for recurrent layers
-
layer_simple_rnn() - Fully-connected RNN where the output is to be fed back as the new input.
-
layer_time_distributed() - This wrapper allows to apply a layer to every temporal slice of an input.
-
rnn_cell_gru() - Cell class for the GRU layer.
-
rnn_cell_lstm() - Cell class for the LSTM layer.
-
rnn_cell_simple() - Cell class for SimpleRNN.
-
rnn_cells_stack() - Wrapper allowing a stack of RNN cells to behave as a single cell.
-
reset_state() - Reset the state for a model, layer or metric.
-
layer_additive_attention() - Additive attention layer, a.k.a. Bahdanau-style attention.
-
layer_attention() - Dot-product attention layer, a.k.a. Luong-style attention.
-
layer_group_query_attention() - Grouped Query Attention layer.
-
layer_multi_head_attention() - Multi Head Attention layer.
-
layer_batch_normalization() - Layer that normalizes its inputs.
-
layer_group_normalization() - Group normalization layer.
-
layer_layer_normalization() - Layer normalization layer (Ba et al., 2016).
-
layer_rms_normalization() - Root Mean Square (RMS) Normalization layer.
-
layer_spectral_normalization() - Performs spectral normalization on the weights of a target layer.
-
layer_unit_normalization() - Unit normalization layer.
-
layer_activity_regularization() - Layer that applies an update to the cost function based input activity.
-
layer_alpha_dropout() - Applies Alpha Dropout to the input.
-
layer_dropout() - Applies dropout to the input.
-
layer_gaussian_dropout() - Apply multiplicative 1-centered Gaussian noise.
-
layer_gaussian_noise() - Apply additive zero-centered Gaussian noise.
-
layer_spatial_dropout_1d() - Spatial 1D version of Dropout.
-
layer_spatial_dropout_2d() - Spatial 2D version of Dropout.
-
layer_spatial_dropout_3d() - Spatial 3D version of Dropout.
-
layer_add() - Performs elementwise addition operation.
-
layer_average() - Averages a list of inputs element-wise..
-
layer_concatenate() - Concatenates a list of inputs.
-
layer_dot() - Computes element-wise dot product of two tensors.
-
layer_maximum() - Computes element-wise maximum on a list of inputs.
-
layer_minimum() - Computes elementwise minimum on a list of inputs.
-
layer_multiply() - Performs elementwise multiplication.
-
layer_subtract() - Performs elementwise subtraction.
-
layer_aug_mix() - Performs the AugMix data augmentation technique.
-
layer_auto_contrast() - Performs the auto-contrast operation on an image.
-
layer_category_encoding() - A preprocessing layer which encodes integer features.
-
layer_center_crop() - A preprocessing layer which crops images.
-
layer_cut_mix() - CutMix data augmentation technique.
-
layer_discretization() - A preprocessing layer which buckets continuous features by ranges.
-
layer_equalization() - Preprocessing layer for histogram equalization on image channels.
-
layer_feature_space()feature_cross()feature_custom()feature_float()feature_float_rescaled()feature_float_normalized()feature_float_discretized()feature_integer_categorical()feature_string_categorical()feature_string_hashed()feature_integer_hashed() - One-stop utility for preprocessing and encoding structured data.
-
layer_hashed_crossing() - A preprocessing layer which crosses features using the "hashing trick".
-
layer_hashing() - A preprocessing layer which hashes and bins categorical features.
-
layer_integer_lookup() - A preprocessing layer that maps integers to (possibly encoded) indices.
-
layer_max_num_bounding_boxes() - Ensure the maximum number of bounding boxes.
-
layer_mel_spectrogram() - A preprocessing layer to convert raw audio signals to Mel spectrograms.
-
layer_mix_up() - MixUp implements the MixUp data augmentation technique.
-
layer_normalization() - A preprocessing layer that normalizes continuous features.
-
layer_rand_augment() - RandAugment performs the Rand Augment operation on input images.
-
layer_random_brightness() - A preprocessing layer which randomly adjusts brightness during training.
-
layer_random_color_degeneration() - Randomly performs the color degeneration operation on given images.
-
layer_random_color_jitter() - Randomly apply brightness, contrast, saturation
-
layer_random_contrast() - A preprocessing layer which randomly adjusts contrast during training.
-
layer_random_crop() - A preprocessing layer which randomly crops images during training.
-
layer_random_erasing() - Random Erasing data augmentation technique.
-
layer_random_flip() - A preprocessing layer which randomly flips images during training.
-
layer_random_gaussian_blur() - Applies random Gaussian blur to images for data augmentation.
-
layer_random_grayscale() - Preprocessing layer for random conversion of RGB images to grayscale.
-
layer_random_hue() - Randomly adjusts the hue on given images.
-
layer_random_invert() - Preprocessing layer for random inversion of image colors.
-
layer_random_perspective() - A preprocessing layer that applies random perspective transformations.
-
layer_random_posterization() - Reduces the number of bits for each color channel.
-
layer_random_rotation() - A preprocessing layer which randomly rotates images during training.
-
layer_random_saturation() - Randomly adjusts the saturation on given images.
-
layer_random_sharpness() - Randomly performs the sharpness operation on given images.
-
layer_random_shear() - A preprocessing layer that randomly applies shear transformations
-
layer_random_translation() - A preprocessing layer which randomly translates images during training.
-
layer_random_zoom() - A preprocessing layer which randomly zooms images during training.
-
layer_rescaling() - A preprocessing layer which rescales input values to a new range.
-
layer_resizing() - A preprocessing layer which resizes images.
-
layer_solarization() - Applies
(max_value - pixel + min_value)for each pixel in the image.
-
layer_stft_spectrogram() - Layer to compute the Short-Time Fourier Transform (STFT) on a 1D signal.
-
layer_string_lookup() - A preprocessing layer that maps strings to (possibly encoded) indices.
-
layer_text_vectorization()get_vocabulary()set_vocabulary() - A preprocessing layer which maps text features to integer sequences.
-
layer_pipeline() - Applies a series of layers to an input.
-
adapt() - Fits the state of the preprocessing layer to the data being passed
-
layer_tfsm() - Reload a Keras model/layer that was saved via
export_savedmodel().
-
layer_jax_model_wrapper() - Keras Layer that wraps a JAX model.
-
layer_flax_module_wrapper() - Keras Layer that wraps a Flax module.
-
layer_torch_module_wrapper() - Torch module wrapper layer.
-
layer_lambda() - Wraps arbitrary expressions as a
Layerobject.
-
Layer() - Define a custom
Layerclass.
-
keras_variable() - Represents a backend-agnostic variable in Keras.
-
get_config()from_config() - Layer/Model configuration
-
get_weights()set_weights() - Layer/Model weights as R arrays
-
count_params() - Count the total number of scalars composing the weights.
-
reset_state() - Reset the state for a model, layer or metric.
-
callback_model_checkpoint() - Callback to save the Keras model or model weights at some frequency.
-
callback_backup_and_restore() - Callback to back up and restore the training state.
-
callback_early_stopping() - Stop training when a monitored metric has stopped improving.
-
callback_terminate_on_nan() - Callback that terminates training when a NaN loss is encountered.
-
callback_learning_rate_scheduler() - Learning rate scheduler.
-
callback_reduce_lr_on_plateau() - Reduce learning rate when a metric has stopped improving.
-
callback_csv_logger() - Callback that streams epoch results to a CSV file.
-
callback_tensorboard() - Enable visualizations for TensorBoard.
-
callback_remote_monitor() - Callback used to stream events to a server.
-
callback_lambda() - Callback for creating simple, custom callbacks on-the-fly.
-
callback_swap_ema_weights() - Swaps model weights and EMA weights before and after evaluation.
-
Callback() - Define a custom
Callbackclass
-
op_associative_scan() - Performs a scan with an associative binary operation, in parallel.
-
op_cast() - Cast a tensor to the desired dtype.
-
op_cond() - Conditionally applies
true_fnorfalse_fn.
-
op_convert_to_numpy()op_convert_to_array() - Convert a tensor to an R or NumPy array.
-
op_convert_to_tensor() - Convert an array to a tensor.
-
op_custom_gradient() - Decorator to define a function with a custom gradient.
-
op_dtype() - Return the dtype of the tensor input as a standardized string.
-
op_fori_loop() - For loop implementation.
-
op_is_tensor() - Check whether the given object is a tensor.
-
op_map() - Map a function over leading array axes.
-
op_rearrange() - Rearranges the axes of a Keras tensor according to a specified pattern,
-
op_scan() - Scan a function over leading array axes while carrying along state.
-
op_scatter() - Returns a tensor of shape
shapewhereindicesare set tovalues.
-
op_scatter_update() - Update inputs via updates at scattered (sparse) indices.
-
op_searchsorted() - Perform a binary search
-
op_shape() - Gets the shape of the tensor input.
-
op_slice() - Return a slice of an input tensor.
-
op_slice_update() - Update an input by slicing in a tensor of updated values.
-
op_stop_gradient() - Stops gradient computation.
-
op_subset()`op_subset<-`()op_subset_set() - Subset elements from a tensor
-
op_switch() - Apply exactly one of the
branchesgiven byindex.
-
op_unstack() - Unpacks the given dimension of a rank-R tensor into rank-(R-1) tensors.
-
op_vectorized_map() - Parallel map of function
fon the first axis of tensor(s)elements.
-
op_while_loop() - While loop implementation.
-
op_erf() - Computes the error function of
x, element-wise.
-
op_erfinv() - Computes the inverse error function of
x, element-wise.
-
op_extract_sequences() - Expands the dimension of last axis into sequences of
sequence_length.
-
op_fft() - Computes the Fast Fourier Transform along last axis of input.
-
op_fft2() - Computes the 2D Fast Fourier Transform along the last two axes of input.
-
op_ifft2() - Computes the 2D Inverse Fast Fourier Transform along the last two axes of
-
op_in_top_k() - Checks if the targets are in the top-k predictions.
-
op_irfft() - Inverse real-valued Fast Fourier transform along the last axis.
-
op_istft() - Inverse Short-Time Fourier Transform along the last axis of the input.
-
op_logsumexp() - Computes the logarithm of sum of exponentials of elements in a tensor.
-
op_qr() - Computes the QR decomposition of a tensor.
-
op_rfft() - Real-valued Fast Fourier Transform along the last axis of the input.
-
op_rsqrt() - Computes reciprocal of square root of x element-wise.
-
op_segment_max() - Computes the max of segments in a tensor.
-
op_segment_sum() - Computes the sum of segments in a tensor.
-
op_solve() - Solves a linear system of equations given by
a x = b.
-
op_stft() - Short-Time Fourier Transform along the last axis of the input.
-
op_top_k() - Finds the top-k values and their indices in a tensor.
-
op_abs() - Compute the absolute value element-wise.
-
op_add() - Add arguments element-wise.
-
op_all() - Test whether all array elements along a given axis evaluate to
TRUE.
-
op_any() - Test whether any array element along a given axis evaluates to
TRUE.
-
op_append() - Append tensor
x2to the end of tensorx1.
-
op_arange() - Return evenly spaced values within a given interval.
-
op_arccos() - Trigonometric inverse cosine, element-wise.
-
op_arccosh() - Inverse hyperbolic cosine, element-wise.
-
op_arcsin() - Inverse sine, element-wise.
-
op_arcsinh() - Inverse hyperbolic sine, element-wise.
-
op_arctan() - Trigonometric inverse tangent, element-wise.
-
op_arctan2() - Element-wise arc tangent of
x1/x2choosing the quadrant correctly.
-
op_arctanh() - Inverse hyperbolic tangent, element-wise.
-
op_argmax() - Returns the indices of the maximum values along an axis.
-
op_argmin() - Returns the indices of the minimum values along an axis.
-
op_argpartition() - Performs an indirect partition along the given axis.
-
op_argsort() - Returns the indices that would sort a tensor.
-
op_array() - Create a tensor.
-
op_average() - Compute the weighted average along the specified axis.
-
op_bincount() - Count the number of occurrences of each value in a tensor of integers.
-
op_bitwise_and() - Compute the bit-wise AND of two arrays element-wise.
-
op_bitwise_invert() - Compute bit-wise inversion, or bit-wise NOT, element-wise.
-
op_bitwise_left_shift() - Shift the bits of an integer to the left.
-
op_bitwise_not() - Compute bit-wise inversion, or bit-wise NOT, element-wise.
-
op_bitwise_or() - Compute the bit-wise OR of two arrays element-wise.
-
op_bitwise_right_shift() - Shift the bits of an integer to the right.
-
op_bitwise_xor() - Compute the bit-wise XOR of two arrays element-wise.
-
op_broadcast_to() - Broadcast a tensor to a new shape.
-
op_ceil() - Return the ceiling of the input, element-wise.
-
op_clip() - Clip (limit) the values in a tensor.
-
op_concatenate() - Join a sequence of tensors along an existing axis.
-
op_conj() - Returns the complex conjugate, element-wise.
-
op_copy() - Returns a copy of
x.
-
op_correlate() - Compute the cross-correlation of two 1-dimensional tensors.
-
op_cos() - Cosine, element-wise.
-
op_cosh() - Hyperbolic cosine, element-wise.
-
op_count_nonzero() - Counts the number of non-zero values in
xalong the givenaxis.
-
op_cross() - Returns the cross product of two (arrays of) vectors.
-
op_ctc_decode() - Decodes the output of a CTC model.
-
op_cumprod() - Return the cumulative product of elements along a given axis.
-
op_cumsum() - Returns the cumulative sum of elements along a given axis.
-
op_diag() - Extract a diagonal or construct a diagonal array.
-
op_diagflat() - Create a two-dimensional array with the flattened input diagonal.
-
op_diagonal() - Return specified diagonals.
-
op_diff() - Calculate the n-th discrete difference along the given axis.
-
op_digitize() - Returns the indices of the bins to which each value in
xbelongs.
-
op_divide() - Divide arguments element-wise.
-
op_divide_no_nan() - Safe element-wise division which returns 0 where the denominator is 0.
-
op_dot() - Dot product of two tensors.
-
op_einsum() - Evaluates the Einstein summation convention on the operands.
-
op_empty() - Return a tensor of given shape and type filled with uninitialized data.
-
op_equal() - Returns
(x1 == x2)element-wise.
-
op_exp() - Calculate the exponential of all elements in the input tensor.
-
op_exp2() - Calculate the base-2 exponential of all elements in the input tensor.
-
op_expand_dims() - Expand the shape of a tensor.
-
op_expm1() - Calculate
exp(x) - 1for all elements in the tensor.
-
op_eye() - Return a 2-D tensor with ones on the diagonal and zeros elsewhere.
-
op_flip() - Reverse the order of elements in the tensor along the given axis.
-
op_floor() - Return the floor of the input, element-wise.
-
op_floor_divide() - Returns the largest integer smaller or equal to the division of inputs.
-
op_full() - Return a new tensor of given shape and type, filled with
fill_value.
-
op_full_like() - Return a full tensor with the same shape and type as the given tensor.
-
op_get_item() - Return
x[key].
-
op_greater() - Return the truth value of
x1 > x2element-wise.
-
op_greater_equal() - Return the truth value of
x1 >= x2element-wise.
-
op_histogram() - Computes a histogram of the data tensor
x.
-
op_hstack() - Stack tensors in sequence horizontally (column wise).
-
op_identity() - Return the identity tensor.
-
op_imag() - Return the imaginary part of the complex argument.
-
op_inner() - Return the inner product of two tensors.
-
op_isclose() - Return whether two tensors are element-wise almost equal.
-
op_isfinite() - Return whether a tensor is finite, element-wise.
-
op_isinf() - Test element-wise for positive or negative infinity.
-
op_isnan() - Test element-wise for NaN and return result as a boolean tensor.
-
op_left_shift() - Shift the bits of an integer to the left.
-
op_less() - Return the truth value of
x1 < x2element-wise.
-
op_less_equal() - Return the truth value of
x1 <= x2element-wise.
-
op_linspace() - Return evenly spaced numbers over a specified interval.
-
op_log() - Natural logarithm, element-wise.
-
op_log10() - Return the base 10 logarithm of the input tensor, element-wise.
-
op_log1p() - Returns the natural logarithm of one plus the
x, element-wise.
-
op_log2() - Base-2 logarithm of
x, element-wise.
-
op_logaddexp() - Logarithm of the sum of exponentiations of the inputs.
-
op_logdet() - Computes log of the determinant of a hermitian positive definite matrix.
-
op_logical_and() - Computes the element-wise logical AND of the given input tensors.
-
op_logical_not() - Computes the element-wise NOT of the given input tensor.
-
op_logical_or() - Computes the element-wise logical OR of the given input tensors.
-
op_logical_xor() - Compute the truth value of
x1 XOR x2, element-wise.
-
op_logspace() - Returns numbers spaced evenly on a log scale.
-
op_lstsq() - Return the least-squares solution to a linear matrix equation.
-
op_matmul() - Matrix product of two tensors.
-
op_max() - Return the maximum of a tensor or maximum along an axis.
-
op_maximum()op_pmax() - Element-wise maximum of
x1andx2.
-
op_mean() - Compute the arithmetic mean along the specified axes.
-
op_median() - Compute the median along the specified axis.
-
op_meshgrid() - Creates grids of coordinates from coordinate vectors.
-
op_min() - Return the minimum of a tensor or minimum along an axis.
-
op_minimum()op_pmin() - Element-wise minimum of
x1andx2.
-
op_mod() - Returns the element-wise remainder of division.
-
op_moveaxis() - Move axes of a tensor to new positions.
-
op_multiply() - Multiply arguments element-wise.
-
op_nan_to_num() - Replace NaN with zero and infinity with large finite numbers.
-
op_ndim() - Return the number of dimensions of a tensor.
-
op_negative() - Numerical negative, element-wise.
-
op_nonzero() - Return the indices of the elements that are non-zero.
-
op_not_equal() - Return
(x1 != x2)element-wise.
-
op_ones() - Return a new tensor of given shape and type, filled with ones.
-
op_ones_like() - Return a tensor of ones with the same shape and type of
x.
-
op_outer() - Compute the outer product of two vectors.
-
op_pad() - Pad a tensor.
-
op_power() - First tensor elements raised to powers from second tensor, element-wise.
-
op_prod() - Return the product of tensor elements over a given axis.
-
op_quantile() - Compute the q-th quantile(s) of the data along the specified axis.
-
op_ravel() - Return a contiguous flattened tensor.
-
op_real() - Return the real part of the complex argument.
-
op_reciprocal() - Return the reciprocal of the argument, element-wise.
-
op_repeat() - Repeat each element of a tensor after themselves.
-
op_reshape() - Gives a new shape to a tensor without changing its data.
-
op_right_shift() - Shift the bits of an integer to the right.
-
op_roll() - Roll tensor elements along a given axis.
-
op_rot90() - Rotate an array by 90 degrees in the plane specified by axes.
-
op_round() - Evenly round to the given number of decimals.
-
op_saturate_cast() - Performs a safe saturating cast to the desired dtype.
-
op_select() - Return elements from
choicelist, based on conditions incondlist.
-
op_sign() - Returns a tensor with the signs of the elements of
x.
-
op_signbit() - Return the sign bit of the elements of
x.
-
op_sin() - Trigonometric sine, element-wise.
-
op_sinh() - Hyperbolic sine, element-wise.
-
op_size() - Return the number of elements in a tensor.
-
op_sort() - Sorts the elements of
xalong a given axis in ascending order.
-
op_split() - Split a tensor into chunks.
-
op_sqrt() - Return the non-negative square root of a tensor, element-wise.
-
op_square() - Return the element-wise square of the input.
-
op_squeeze() - Remove axes of length one from
x.
-
op_stack() - Join a sequence of tensors along a new axis.
-
op_std() - Compute the standard deviation along the specified axis.
-
op_subtract() - Subtract arguments element-wise.
-
op_sum() - Sum of a tensor over the given axes.
-
op_swapaxes() - Interchange two axes of a tensor.
-
op_take() - Take elements from a tensor along an axis.
-
op_take_along_axis() - Select values from
xat the 1-Dindicesalong the given axis.
-
op_tan() - Compute tangent, element-wise.
-
op_tanh() - Hyperbolic tangent, element-wise.
-
op_tensordot() - Compute the tensor dot product along specified axes.
-
op_tile() - Repeat
xthe number of times given byrepeats.
-
op_trace() - Return the sum along diagonals of the tensor.
-
op_transpose() - Returns a tensor with
axestransposed.
-
op_tri() - Return a tensor with ones at and below a diagonal and zeros elsewhere.
-
op_tril() - Return lower triangle of a tensor.
-
op_triu() - Return upper triangle of a tensor.
-
op_trunc() - Return the truncated value of the input, element-wise.
-
op_var() - Compute the variance along the specified axes.
-
op_vdot() - Return the dot product of two vectors.
-
op_vectorize() - Turn a function into a vectorized function.
-
op_vstack() - Stack tensors in sequence vertically (row wise).
-
op_where() - Return elements chosen from
x1orx2depending oncondition.
-
op_zeros() - Return a new tensor of given shape and type, filled with zeros.
-
op_zeros_like() - Return a tensor of zeros with the same shape and type as
x.
-
op_average_pool() - Average pooling operation.
-
op_batch_normalization() - Normalizes
xbymeanandvariance.
-
op_binary_crossentropy() - Computes binary cross-entropy loss between target and output tensor.
-
op_categorical_crossentropy() - Computes categorical cross-entropy loss between target and output tensor.
-
op_celu() - Continuously-differentiable exponential linear unit.
-
op_conv() - General N-D convolution.
-
op_conv_transpose() - General N-D convolution transpose.
-
op_ctc_loss() - CTC (Connectionist Temporal Classification) loss.
-
op_depthwise_conv() - General N-D depthwise convolution.
-
op_dot_product_attention() - Scaled dot product attention function.
-
op_elu() - Exponential Linear Unit activation function.
-
op_gelu() - Gaussian Error Linear Unit (GELU) activation function.
-
op_glu() - Gated Linear Unit (GLU) activation function.
-
op_hard_shrink() - Hard Shrink activation function.
-
op_hard_sigmoid() - Hard sigmoid activation function.
-
op_hard_silu()op_hard_swish() - Hard SiLU activation function, also known as Hard Swish.
-
op_hard_tanh() - Applies the HardTanh function element-wise.
-
op_leaky_relu() - Leaky version of a Rectified Linear Unit activation function.
-
op_log_sigmoid() - Logarithm of the sigmoid activation function.
-
op_log_softmax() - Log-softmax activation function.
-
op_max_pool() - Max pooling operation.
-
op_moments() - Calculates the mean and variance of
x.
-
op_multi_hot() - Encodes integer labels as multi-hot vectors.
-
op_normalize() - Normalizes
xover the specified axis.
-
op_one_hot() - Converts integer tensor
xinto a one-hot tensor.
-
op_polar() - Constructs a complex tensor whose elements are Cartesian
-
op_psnr() - Peak Signal-to-Noise Ratio (PSNR) function.
-
op_relu() - Rectified linear unit activation function.
-
op_relu6() - Rectified linear unit activation function with upper bound of 6.
-
op_rms_normalization() - Performs Root Mean Square (RMS) normalization on
x.
-
op_selu() - Scaled Exponential Linear Unit (SELU) activation function.
-
op_separable_conv() - General N-D separable convolution.
-
op_sigmoid() - Sigmoid activation function.
-
op_silu() - Sigmoid Linear Unit (SiLU) activation function, also known as Swish.
-
op_soft_shrink() - Soft Shrink activation function.
-
op_softmax() - Softmax activation function.
-
op_softplus() - Softplus activation function.
-
op_softsign() - Softsign activation function.
-
op_sparse_categorical_crossentropy() - Computes sparse categorical cross-entropy loss.
-
op_sparse_plus() - SparsePlus activation function.
-
op_sparsemax() - Sparsemax activation function.
-
op_squareplus() - Squareplus activation function.
-
op_tanh_shrink() - Applies the tanh shrink function element-wise.
-
op_threshold() - Threshold activation function.
-
op_unravel_index() - Convert flat indices to coordinate arrays in a given array shape.
-
op_cholesky() - Computes the Cholesky decomposition of a positive semi-definite matrix.
-
op_det() - Computes the determinant of a square tensor.
-
op_eig() - Computes the eigenvalues and eigenvectors of a square matrix.
-
op_eigh() - Computes the eigenvalues and eigenvectors of a complex Hermitian.
-
op_inv() - Computes the inverse of a square tensor.
-
op_lstsq() - Return the least-squares solution to a linear matrix equation.
-
op_lu_factor() - Computes the lower-upper decomposition of a square matrix.
-
op_norm() - Matrix or vector norm.
-
op_slogdet() - Compute the sign and natural logarithm of the determinant of a matrix.
-
op_solve_triangular() - Solves a linear system of equations given by
a %*% x = b.
-
op_svd() - Computes the singular value decomposition of a matrix.
-
op_image_affine_transform() - Applies the given transform(s) to the image(s).
-
op_image_crop() - Crop
imagesto a specifiedheightandwidth.
-
op_image_extract_patches() - Extracts patches from the image(s).
-
op_image_gaussian_blur() - Applies a Gaussian blur to the image(s).
-
op_image_hsv_to_rgb() - Convert HSV images to RGB.
-
op_image_map_coordinates() - Map the input array to new coordinates by interpolation.
-
op_image_pad() - Pad
imageswith zeros to the specifiedheightandwidth.
-
op_image_perspective_transform() - Applies a perspective transformation to the image(s).
-
op_image_resize() - Resize images to size using the specified interpolation method.
-
op_image_rgb_to_grayscale() - Convert RGB images to grayscale.
-
op_image_rgb_to_hsv() - Convert RGB images to HSV.
-
loss_binary_crossentropy() - Computes the cross-entropy loss between true labels and predicted labels.
-
loss_binary_focal_crossentropy() - Computes focal cross-entropy loss between true labels and predictions.
-
loss_categorical_crossentropy() - Computes the crossentropy loss between the labels and predictions.
-
loss_categorical_focal_crossentropy() - Computes the alpha balanced focal crossentropy loss.
-
loss_categorical_hinge() - Computes the categorical hinge loss between
y_true&y_pred.
-
loss_circle() - Computes Circle Loss between integer labels and L2-normalized embeddings.
-
loss_cosine_similarity() - Computes the cosine similarity between
y_true&y_pred.
-
loss_ctc() - CTC (Connectionist Temporal Classification) loss.
-
loss_dice() - Computes the Dice loss value between
y_trueandy_pred.
-
loss_hinge() - Computes the hinge loss between
y_true&y_pred.
-
loss_huber() - Computes the Huber loss between
y_true&y_pred.
-
loss_kl_divergence() - Computes Kullback-Leibler divergence loss between
y_true&y_pred.
-
loss_log_cosh() - Computes the logarithm of the hyperbolic cosine of the prediction error.
-
loss_mean_absolute_error() - Computes the mean of absolute difference between labels and predictions.
-
loss_mean_absolute_percentage_error() - Computes the mean absolute percentage error between
y_trueandy_pred.
-
loss_mean_squared_error() - Computes the mean of squares of errors between labels and predictions.
-
loss_mean_squared_logarithmic_error() - Computes the mean squared logarithmic error between
y_trueandy_pred.
-
loss_poisson() - Computes the Poisson loss between
y_true&y_pred.
-
loss_sparse_categorical_crossentropy() - Computes the crossentropy loss between the labels and predictions.
-
loss_squared_hinge() - Computes the squared hinge loss between
y_true&y_pred.
-
loss_tversky() - Computes the Tversky loss value between
y_trueandy_pred.
-
Loss() - Subclass the base
Lossclass
-
metric_auc() - Approximates the AUC (Area under the curve) of the ROC or PR curves.
-
metric_binary_accuracy() - Calculates how often predictions match binary labels.
-
metric_binary_crossentropy() - Computes the crossentropy metric between the labels and predictions.
-
metric_binary_focal_crossentropy() - Computes the binary focal crossentropy loss.
-
metric_binary_iou() - Computes the Intersection-Over-Union metric for class 0 and/or 1.
-
metric_categorical_accuracy() - Calculates how often predictions match one-hot labels.
-
metric_categorical_crossentropy() - Computes the crossentropy metric between the labels and predictions.
-
metric_categorical_focal_crossentropy() - Computes the categorical focal crossentropy loss.
-
metric_categorical_hinge() - Computes the categorical hinge metric between
y_trueandy_pred.
-
metric_concordance_correlation() - Calculates the Concordance Correlation Coefficient (CCC).
-
metric_cosine_similarity() - Computes the cosine similarity between the labels and predictions.
-
metric_f1_score() - Computes F-1 Score.
-
metric_false_negatives() - Calculates the number of false negatives.
-
metric_false_positives() - Calculates the number of false positives.
-
metric_fbeta_score() - Computes F-Beta score.
-
metric_hinge() - Computes the hinge metric between
y_trueandy_pred.
-
metric_huber() - Computes Huber loss value.
-
metric_iou() - Computes the Intersection-Over-Union metric for specific target classes.
-
metric_kl_divergence() - Computes Kullback-Leibler divergence metric between
y_trueand
-
metric_log_cosh() - Logarithm of the hyperbolic cosine of the prediction error.
-
metric_log_cosh_error() - Computes the logarithm of the hyperbolic cosine of the prediction error.
-
metric_mean() - Compute the (weighted) mean of the given values.
-
metric_mean_absolute_error() - Computes the mean absolute error between the labels and predictions.
-
metric_mean_absolute_percentage_error() - Computes mean absolute percentage error between
y_trueandy_pred.
-
metric_mean_iou() - Computes the mean Intersection-Over-Union metric.
-
metric_mean_squared_error() - Computes the mean squared error between
y_trueandy_pred.
-
metric_mean_squared_logarithmic_error() - Computes mean squared logarithmic error between
y_trueandy_pred.
-
metric_mean_wrapper() - Wrap a stateless metric function with the
Meanmetric.
-
metric_one_hot_iou() - Computes the Intersection-Over-Union metric for one-hot encoded labels.
-
metric_one_hot_mean_iou() - Computes mean Intersection-Over-Union metric for one-hot encoded labels.
-
metric_pearson_correlation() - Calculates the Pearson Correlation Coefficient (PCC).
-
metric_poisson() - Computes the Poisson metric between
y_trueandy_pred.
-
metric_precision() - Computes the precision of the predictions with respect to the labels.
-
metric_precision_at_recall() - Computes best precision where recall is >= specified value.
-
metric_r2_score() - Computes R2 score.
-
metric_recall() - Computes the recall of the predictions with respect to the labels.
-
metric_recall_at_precision() - Computes best recall where precision is >= specified value.
-
metric_root_mean_squared_error() - Computes root mean squared error metric between
y_trueandy_pred.
-
metric_sensitivity_at_specificity() - Computes best sensitivity where specificity is >= specified value.
-
metric_sparse_categorical_accuracy() - Calculates how often predictions match integer labels.
-
metric_sparse_categorical_crossentropy() - Computes the crossentropy metric between the labels and predictions.
-
metric_sparse_top_k_categorical_accuracy() - Computes how often integer targets are in the top
Kpredictions.
-
metric_specificity_at_sensitivity() - Computes best specificity where sensitivity is >= specified value.
-
metric_squared_hinge() - Computes the hinge metric between
y_trueandy_pred.
-
metric_sum() - Compute the (weighted) sum of the given values.
-
metric_top_k_categorical_accuracy() - Computes how often targets are in the top
Kpredictions.
-
metric_true_negatives() - Calculates the number of true negatives.
-
metric_true_positives() - Calculates the number of true positives.
-
custom_metric() - Custom metric function
-
reset_state() - Reset the state for a model, layer or metric.
-
Metric() - Subclass the base
Metricclass
Data Loading
Keras data loading utilities help you quickly go from raw data to a TF Dataset object that can be used to efficiently train a model. These loading utilites can be combined with preprocessing layers to futher transform your input dataset before training.
-
image_dataset_from_directory() - Generates a
tf.data.Datasetfrom image files in a directory.
-
text_dataset_from_directory() - Generates a
tf.data.Datasetfrom text files in a directory.
-
audio_dataset_from_directory() - Generates a
tf.data.Datasetfrom audio files in a directory.
-
timeseries_dataset_from_array() - Creates a dataset of sliding windows over a timeseries provided as array.
-
layer_feature_space()feature_cross()feature_custom()feature_float()feature_float_rescaled()feature_float_normalized()feature_float_discretized()feature_integer_categorical()feature_string_categorical()feature_string_hashed()feature_integer_hashed() - One-stop utility for preprocessing and encoding structured data.
-
adapt() - Fits the state of the preprocessing layer to the data being passed
-
layer_normalization() - A preprocessing layer that normalizes continuous features.
-
layer_discretization() - A preprocessing layer which buckets continuous features by ranges.
-
layer_category_encoding() - A preprocessing layer which encodes integer features.
-
layer_hashing() - A preprocessing layer which hashes and bins categorical features.
-
layer_hashed_crossing() - A preprocessing layer which crosses features using the "hashing trick".
-
layer_string_lookup() - A preprocessing layer that maps strings to (possibly encoded) indices.
-
layer_integer_lookup() - A preprocessing layer that maps integers to (possibly encoded) indices.
-
layer_text_vectorization()get_vocabulary()set_vocabulary() - A preprocessing layer which maps text features to integer sequences.
-
timeseries_dataset_from_array() - Creates a dataset of sliding windows over a timeseries provided as array.
-
pad_sequences() - Pads sequences to the same length.
-
layer_resizing() - A preprocessing layer which resizes images.
-
layer_rescaling() - A preprocessing layer which rescales input values to a new range.
-
layer_center_crop() - A preprocessing layer which crops images.
-
image_array_save() - Saves an image stored as an array to a path or file object.
-
image_dataset_from_directory() - Generates a
tf.data.Datasetfrom image files in a directory.
-
image_from_array() - Converts a 3D array to a PIL Image instance.
-
image_load() - Loads an image into PIL format.
-
image_smart_resize() - Resize images to a target size without aspect ratio distortion.
-
image_to_array() - Converts a PIL Image instance to a matrix.
-
op_image_affine_transform() - Applies the given transform(s) to the image(s).
-
op_image_crop() - Crop
imagesto a specifiedheightandwidth.
-
op_image_extract_patches() - Extracts patches from the image(s).
-
op_image_gaussian_blur() - Applies a Gaussian blur to the image(s).
-
op_image_hsv_to_rgb() - Convert HSV images to RGB.
-
op_image_map_coordinates() - Map the input array to new coordinates by interpolation.
-
op_image_pad() - Pad
imageswith zeros to the specifiedheightandwidth.
-
op_image_perspective_transform() - Applies a perspective transformation to the image(s).
-
op_image_resize() - Resize images to size using the specified interpolation method.
-
op_image_rgb_to_grayscale() - Convert RGB images to grayscale.
-
op_image_rgb_to_hsv() - Convert RGB images to HSV.
-
layer_random_crop() - A preprocessing layer which randomly crops images during training.
-
layer_random_flip() - A preprocessing layer which randomly flips images during training.
-
layer_random_translation() - A preprocessing layer which randomly translates images during training.
-
layer_random_rotation() - A preprocessing layer which randomly rotates images during training.
-
layer_random_zoom() - A preprocessing layer which randomly zooms images during training.
-
layer_random_contrast() - A preprocessing layer which randomly adjusts contrast during training.
-
layer_random_brightness() - A preprocessing layer which randomly adjusts brightness during training.
-
application_preprocess_inputs()application_decode_predictions() - Preprocessing and postprocessing utilities
-
optimizer_adadelta() - Optimizer that implements the Adadelta algorithm.
-
optimizer_adafactor() - Optimizer that implements the Adafactor algorithm.
-
optimizer_adagrad() - Optimizer that implements the Adagrad algorithm.
-
optimizer_adam() - Optimizer that implements the Adam algorithm.
-
optimizer_adam_w() - Optimizer that implements the AdamW algorithm.
-
optimizer_adamax() - Optimizer that implements the Adamax algorithm.
-
optimizer_ftrl() - Optimizer that implements the FTRL algorithm.
-
optimizer_lamb() - Optimizer that implements the Lamb algorithm.
-
optimizer_lion() - Optimizer that implements the Lion algorithm.
-
optimizer_loss_scale() - An optimizer that dynamically scales the loss to prevent underflow.
-
optimizer_nadam() - Optimizer that implements the Nadam algorithm.
-
optimizer_rmsprop() - Optimizer that implements the RMSprop algorithm.
-
optimizer_sgd() - Gradient descent (with momentum) optimizer.
-
learning_rate_schedule_cosine_decay() - A
LearningRateSchedulethat uses a cosine decay with optional warmup.
-
learning_rate_schedule_cosine_decay_restarts() - A
LearningRateSchedulethat uses a cosine decay schedule with restarts.
-
learning_rate_schedule_exponential_decay() - A
LearningRateSchedulethat uses an exponential decay schedule.
-
learning_rate_schedule_inverse_time_decay() - A
LearningRateSchedulethat uses an inverse time decay schedule.
-
learning_rate_schedule_piecewise_constant_decay() - A
LearningRateSchedulethat uses a piecewise constant decay schedule.
-
learning_rate_schedule_polynomial_decay() - A
LearningRateSchedulethat uses a polynomial decay schedule.
-
LearningRateSchedule() - Define a custom
LearningRateScheduleclass
-
initializer_constant() - Initializer that generates tensors with constant values.
-
initializer_glorot_normal() - The Glorot normal initializer, also called Xavier normal initializer.
-
initializer_glorot_uniform() - The Glorot uniform initializer, also called Xavier uniform initializer.
-
initializer_he_normal() - He normal initializer.
-
initializer_he_uniform() - He uniform variance scaling initializer.
-
initializer_identity() - Initializer that generates the identity matrix.
-
initializer_lecun_normal() - Lecun normal initializer.
-
initializer_lecun_uniform() - Lecun uniform initializer.
-
initializer_ones() - Initializer that generates tensors initialized to 1.
-
initializer_orthogonal() - Initializer that generates an orthogonal matrix.
-
initializer_random_normal() - Random normal initializer.
-
initializer_random_uniform() - Random uniform initializer.
-
initializer_stft() - Initializer of Conv kernels for Short-term Fourier Transformation (STFT).
-
initializer_truncated_normal() - Initializer that generates a truncated normal distribution.
-
initializer_variance_scaling() - Initializer that adapts its scale to the shape of its input tensors.
-
initializer_zeros() - Initializer that generates tensors initialized to 0.
-
Constraint() - Define a custom
Constraintclass
-
constraint_maxnorm() - MaxNorm weight constraint.
-
constraint_minmaxnorm() - MinMaxNorm weight constraint.
-
constraint_nonneg() - Constrains the weights to be non-negative.
-
constraint_unitnorm() - Constrains the weights incident to each hidden unit to have unit norm.
-
regularizer_l1() - A regularizer that applies a L1 regularization penalty.
-
regularizer_l1_l2() - A regularizer that applies both L1 and L2 regularization penalties.
-
regularizer_l2() - A regularizer that applies a L2 regularization penalty.
-
regularizer_orthogonal() - Regularizer that encourages input vectors to be orthogonal to each other.
-
activation_celu() - Continuously Differentiable Exponential Linear Unit.
-
activation_elu() - Exponential Linear Unit.
-
activation_exponential() - Exponential activation function.
-
activation_gelu() - Gaussian error linear unit (GELU) activation function.
-
activation_glu() - Gated Linear Unit (GLU) activation function.
-
activation_hard_shrink() - Hard Shrink activation function.
-
activation_hard_sigmoid() - Hard sigmoid activation function.
-
activation_hard_silu()activation_hard_swish() - Hard SiLU activation function, also known as Hard Swish.
-
activation_hard_tanh() - HardTanh activation function.
-
activation_leaky_relu() - Leaky relu activation function.
-
activation_linear() - Linear activation function (pass-through).
-
activation_log_sigmoid() - Logarithm of the sigmoid activation function.
-
activation_log_softmax() - Log-Softmax activation function.
-
activation_mish() - Mish activation function.
-
activation_relu() - Applies the rectified linear unit activation function.
-
activation_relu6() - Relu6 activation function.
-
activation_selu() - Scaled Exponential Linear Unit (SELU).
-
activation_sigmoid() - Sigmoid activation function.
-
activation_silu() - Swish (or Silu) activation function.
-
activation_soft_shrink() - Soft Shrink activation function.
-
activation_softmax() - Softmax converts a vector of values to a probability distribution.
-
activation_softplus() - Softplus activation function.
-
activation_softsign() - Softsign activation function.
-
activation_sparse_plus() - SparsePlus activation function.
-
activation_sparsemax() - Sparsemax activation function.
-
activation_squareplus() - Squareplus activation function.
-
activation_tanh() - Hyperbolic tangent activation function.
-
activation_tanh_shrink() - Tanh shrink activation function.
-
activation_threshold() - Threshold activation function.
-
random_uniform() - Draw samples from a uniform distribution.
-
random_normal() - Draw random samples from a normal (Gaussian) distribution.
-
random_truncated_normal() - Draw samples from a truncated normal distribution.
-
random_gamma() - Draw random samples from the Gamma distribution.
-
random_categorical() - Draws samples from a categorical distribution.
-
random_integer() - Draw random integers from a uniform distribution.
-
random_dropout() - Randomly set some values in a tensor to 0.
-
random_shuffle() - Shuffle the elements of a tensor uniformly at random along an axis.
-
random_beta() - Draw samples from a Beta distribution.
-
random_binomial() - Draw samples from a Binomial distribution.
-
random_seed_generator() - Generates variable seeds upon each call to a function generating random numbers.
-
dataset_boston_housing() - Boston housing price regression dataset
-
dataset_california_housing() - Loads the California Housing dataset.
-
dataset_cifar10() - CIFAR10 small image classification
-
dataset_cifar100() - CIFAR100 small image classification
-
dataset_fashion_mnist() - Fashion-MNIST database of fashion articles
-
dataset_imdb()dataset_imdb_word_index() - IMDB Movie reviews sentiment classification
-
dataset_mnist() - MNIST database of handwritten digits
-
dataset_reuters()dataset_reuters_word_index() - Reuters newswire topics classification
-
config_backend() - Publicly accessible method for determining the current backend.
-
config_disable_flash_attention() - Disable flash attention.
-
config_disable_interactive_logging() - Turn off interactive logging.
-
config_disable_traceback_filtering() - Turn off traceback filtering.
-
config_dtype_policy() - Returns the current default dtype policy object.
-
config_enable_flash_attention() - Enable flash attention.
-
config_enable_interactive_logging() - Turn on interactive logging.
-
config_enable_traceback_filtering() - Turn on traceback filtering.
-
config_enable_unsafe_deserialization() - Disables safe mode globally, allowing deserialization of lambdas.
-
config_epsilon() - Return the value of the fuzz factor used in numeric expressions.
-
config_floatx() - Return the default float type, as a string.
-
config_image_data_format() - Return the default image data format convention.
-
config_is_flash_attention_enabled() - Checks whether flash attention is globally enabled in Keras.
-
config_is_interactive_logging_enabled() - Check if interactive logging is enabled.
-
config_is_traceback_filtering_enabled() - Check if traceback filtering is enabled.
-
config_set_backend() - Reload the backend (and the Keras package).
-
config_set_dtype_policy() - Sets the default dtype policy globally.
-
config_set_epsilon() - Set the value of the fuzz factor used in numeric expressions.
-
config_set_floatx() - Set the default float dtype.
-
config_set_image_data_format() - Set the value of the image data format convention.
-
install_keras() - Install Keras
-
use_backend() - Configure a Keras backend
-
shape()format(<keras_shape>)print(<keras_shape>)`[`(<keras_shape>)as.integer(<keras_shape>)Summary(<keras_shape>)as.list(<keras_shape>)`==`(<keras_shape>)`!=`(<keras_shape>) - Tensor shape utility
-
set_random_seed() - Sets all random seeds (Python, NumPy, and backend framework, e.g. TF).
-
clear_session() - Resets all state generated by Keras.
-
get_source_inputs() - Returns the list of input tensors necessary to compute
tensor.
-
keras - Main Keras module
-
normalize() - Normalizes an array.
-
to_categorical() - Converts a class vector (integers) to binary class matrix.
-
zip_lists() - Zip lists
-
get_file() - Downloads a file from a URL if it not already in the cache.
-
split_dataset() - Splits a dataset into a left half and a right half (e.g. train / test).
-
newaxis - New axis
-
register_keras_serializable() - Registers a custom object with the Keras serialization framework.
-
get_custom_objects()set_custom_objects() - Get/set the currently registered custom objects.
-
get_registered_name() - Returns the name registered to an object within the Keras framework.
-
get_registered_object() - Returns the class associated with
nameif it is registered with Keras.
-
serialize_keras_object() - Retrieve the full config by serializing the Keras object.
-
deserialize_keras_object() - Retrieve the object by deserializing the config dict.
-
with_custom_object_scope() - Provide a scope with mappings of names to custom objects
-
config_enable_unsafe_deserialization() - Disables safe mode globally, allowing deserialization of lambdas.
-
Layer() - Define a custom
Layerclass.
-
Loss() - Subclass the base
Lossclass
-
Metric() - Subclass the base
Metricclass
-
Callback() - Define a custom
Callbackclass
-
Constraint() - Define a custom
Constraintclass
-
Model() - Subclass the base Keras
ModelClass
-
LearningRateSchedule() - Define a custom
LearningRateScheduleclass
-
active_property() - Create an active property class method
-
application_preprocess_inputs()application_decode_predictions() - Preprocessing and postprocessing utilities
-
application_convnext_base() - Instantiates the ConvNeXtBase architecture.
-
application_convnext_large() - Instantiates the ConvNeXtLarge architecture.
-
application_convnext_small() - Instantiates the ConvNeXtSmall architecture.
-
application_convnext_tiny() - Instantiates the ConvNeXtTiny architecture.
-
application_convnext_xlarge() - Instantiates the ConvNeXtXLarge architecture.
-
application_densenet121() - Instantiates the Densenet121 architecture.
-
application_densenet169() - Instantiates the Densenet169 architecture.
-
application_densenet201() - Instantiates the Densenet201 architecture.
-
application_efficientnet_b0() - Instantiates the EfficientNetB0 architecture.
-
application_efficientnet_b1() - Instantiates the EfficientNetB1 architecture.
-
application_efficientnet_b2() - Instantiates the EfficientNetB2 architecture.
-
application_efficientnet_b3() - Instantiates the EfficientNetB3 architecture.
-
application_efficientnet_b4() - Instantiates the EfficientNetB4 architecture.
-
application_efficientnet_b5() - Instantiates the EfficientNetB5 architecture.
-
application_efficientnet_b6() - Instantiates the EfficientNetB6 architecture.
-
application_efficientnet_b7() - Instantiates the EfficientNetB7 architecture.
-
application_efficientnet_v2b0() - Instantiates the EfficientNetV2B0 architecture.
-
application_efficientnet_v2b1() - Instantiates the EfficientNetV2B1 architecture.
-
application_efficientnet_v2b2() - Instantiates the EfficientNetV2B2 architecture.
-
application_efficientnet_v2b3() - Instantiates the EfficientNetV2B3 architecture.
-
application_efficientnet_v2l() - Instantiates the EfficientNetV2L architecture.
-
application_efficientnet_v2m() - Instantiates the EfficientNetV2M architecture.
-
application_efficientnet_v2s() - Instantiates the EfficientNetV2S architecture.
-
application_inception_resnet_v2() - Instantiates the Inception-ResNet v2 architecture.
-
application_inception_v3() - Instantiates the Inception v3 architecture.
-
application_mobilenet() - Instantiates the MobileNet architecture.
-
application_mobilenet_v2() - Instantiates the MobileNetV2 architecture.
-
application_mobilenet_v3_large() - Instantiates the MobileNetV3Large architecture.
-
application_mobilenet_v3_small() - Instantiates the MobileNetV3Small architecture.
-
application_nasnet_large() - Instantiates a NASNet model in ImageNet mode.
-
application_nasnet_mobile() - Instantiates a Mobile NASNet model in ImageNet mode.
-
application_resnet101() - Instantiates the ResNet101 architecture.
-
application_resnet101_v2() - Instantiates the ResNet101V2 architecture.
-
application_resnet152() - Instantiates the ResNet152 architecture.
-
application_resnet152_v2() - Instantiates the ResNet152V2 architecture.
-
application_resnet50() - Instantiates the ResNet50 architecture.
-
application_resnet50_v2() - Instantiates the ResNet50V2 architecture.
-
application_vgg16() - Instantiates the VGG16 model.
-
application_vgg19() - Instantiates the VGG19 model.
-
application_xception() - Instantiates the Xception architecture.