This class processes one step within the whole time sequence input, whereas
layer_simple_rnn() processes the whole sequence.
Usage
rnn_cell_simple(
  units,
  activation = "tanh",
  use_bias = TRUE,
  kernel_initializer = "glorot_uniform",
  recurrent_initializer = "orthogonal",
  bias_initializer = "zeros",
  kernel_regularizer = NULL,
  recurrent_regularizer = NULL,
  bias_regularizer = NULL,
  kernel_constraint = NULL,
  recurrent_constraint = NULL,
  bias_constraint = NULL,
  dropout = 0,
  recurrent_dropout = 0,
  seed = NULL,
  ...
)Arguments
- units
- Positive integer, dimensionality of the output space. 
- activation
- Activation function to use. Default: hyperbolic tangent ( - tanh). If you pass- NULL, no activation is applied (ie. "linear" activation:- a(x) = x).
- use_bias
- Boolean, (default - TRUE), whether the layer should use a bias vector.
- kernel_initializer
- Initializer for the - kernelweights matrix, used for the linear transformation of the inputs. Default:- "glorot_uniform".
- recurrent_initializer
- Initializer for the - recurrent_kernelweights matrix, used for the linear transformation of the recurrent state. Default:- "orthogonal".
- bias_initializer
- Initializer for the bias vector. Default: - "zeros".
- kernel_regularizer
- Regularizer function applied to the - kernelweights matrix. Default:- NULL.
- recurrent_regularizer
- Regularizer function applied to the - recurrent_kernelweights matrix. Default:- NULL.
- bias_regularizer
- Regularizer function applied to the bias vector. Default: - NULL.
- kernel_constraint
- Constraint function applied to the - kernelweights matrix. Default:- NULL.
- recurrent_constraint
- Constraint function applied to the - recurrent_kernelweights matrix. Default:- NULL.
- bias_constraint
- Constraint function applied to the bias vector. Default: - NULL.
- dropout
- Float between 0 and 1. Fraction of the units to drop for the linear transformation of the inputs. Default: 0. 
- recurrent_dropout
- Float between 0 and 1. Fraction of the units to drop for the linear transformation of the recurrent state. Default: 0. 
- seed
- Random seed for dropout. 
- ...
- For forward/backward compatability. 
Value
A Layer instance, which is intended to be used with layer_rnn().
Call Arguments
- sequence: A 2D tensor, with shape- (batch, features).
- states: A 2D tensor with shape- (batch, units), which is the state from the previous time step.
- training: Python boolean indicating whether the layer should behave in training mode or in inference mode. Only relevant when- dropoutor- recurrent_dropoutis used.
Examples
inputs <- random_uniform(c(32, 10, 8))
rnn <- layer_rnn(cell = rnn_cell_simple(units = 4))
output <- rnn(inputs)  # The output has shape `(32, 4)`.
rnn <- layer_rnn(
    cell = rnn_cell_simple(units = 4),
    return_sequences=TRUE,
    return_state=TRUE
)
# whole_sequence_output has shape `(32, 10, 4)`.
# final_state has shape `(32, 4)`.
c(whole_sequence_output, final_state) %<-% rnn(inputs)See also
Other rnn cells: layer_rnn() rnn_cell_gru() rnn_cell_lstm() 
Other simple rnn layers: layer_simple_rnn() 
Other rnn layers: layer_bidirectional() layer_conv_lstm_1d() layer_conv_lstm_2d() layer_conv_lstm_3d() layer_gru() layer_lstm() layer_rnn() layer_simple_rnn() layer_time_distributed() rnn_cell_gru() rnn_cell_lstm() rnn_cells_stack() 
Other layers: Layer() layer_activation() layer_activation_elu() layer_activation_leaky_relu() layer_activation_parametric_relu() layer_activation_relu() layer_activation_softmax() layer_activity_regularization() layer_add() layer_additive_attention() layer_alpha_dropout() layer_attention() layer_aug_mix() layer_auto_contrast() layer_average() layer_average_pooling_1d() layer_average_pooling_2d() layer_average_pooling_3d() layer_batch_normalization() layer_bidirectional() layer_category_encoding() layer_center_crop() layer_concatenate() layer_conv_1d() layer_conv_1d_transpose() layer_conv_2d() layer_conv_2d_transpose() layer_conv_3d() layer_conv_3d_transpose() layer_conv_lstm_1d() layer_conv_lstm_2d() layer_conv_lstm_3d() layer_cropping_1d() layer_cropping_2d() layer_cropping_3d() layer_cut_mix() layer_dense() layer_depthwise_conv_1d() layer_depthwise_conv_2d() layer_discretization() layer_dot() layer_dropout() layer_einsum_dense() layer_embedding() layer_equalization() layer_feature_space() layer_flatten() layer_flax_module_wrapper() layer_gaussian_dropout() layer_gaussian_noise() layer_global_average_pooling_1d() layer_global_average_pooling_2d() layer_global_average_pooling_3d() layer_global_max_pooling_1d() layer_global_max_pooling_2d() layer_global_max_pooling_3d() layer_group_normalization() layer_group_query_attention() layer_gru() layer_hashed_crossing() layer_hashing() layer_identity() layer_integer_lookup() layer_jax_model_wrapper() layer_lambda() layer_layer_normalization() layer_lstm() layer_masking() layer_max_num_bounding_boxes() layer_max_pooling_1d() layer_max_pooling_2d() layer_max_pooling_3d() layer_maximum() layer_mel_spectrogram() layer_minimum() layer_mix_up() layer_multi_head_attention() layer_multiply() layer_normalization() layer_permute() layer_rand_augment() layer_random_brightness() layer_random_color_degeneration() layer_random_color_jitter() layer_random_contrast() layer_random_crop() layer_random_erasing() layer_random_flip() layer_random_gaussian_blur() layer_random_grayscale() layer_random_hue() layer_random_invert() layer_random_perspective() layer_random_posterization() layer_random_rotation() layer_random_saturation() layer_random_sharpness() layer_random_shear() layer_random_translation() layer_random_zoom() layer_repeat_vector() layer_rescaling() layer_reshape() layer_resizing() layer_rms_normalization() layer_rnn() layer_separable_conv_1d() layer_separable_conv_2d() layer_simple_rnn() layer_solarization() layer_spatial_dropout_1d() layer_spatial_dropout_2d() layer_spatial_dropout_3d() layer_spectral_normalization() layer_stft_spectrogram() layer_string_lookup() layer_subtract() layer_text_vectorization() layer_tfsm() layer_time_distributed() layer_torch_module_wrapper() layer_unit_normalization() layer_upsampling_1d() layer_upsampling_2d() layer_upsampling_3d() layer_zero_padding_1d() layer_zero_padding_2d() layer_zero_padding_3d() rnn_cell_gru() rnn_cell_lstm() rnn_cells_stack()