layer_torch_module_wrapper is a wrapper class that can turn any
torch.nn.Module into a Keras layer, in particular by making its
parameters trackable by Keras.
layer_torch_module_wrapper() is only compatible with the PyTorch backend and
cannot be used with the TensorFlow or JAX backends.
Arguments
- object
Object to compose the layer with. A tensor, array, or sequential model.
- module
torch.nn.Moduleinstance. If it's aLazyModuleinstance, then its parameters must be initialized before passing the instance tolayer_torch_module_wrapper(e.g. by calling it once).- name
The name of the layer (string).
- ...
For forward/backward compatability.
Value
The return value depends on the value provided for the first argument.
If object is:
a
keras_model_sequential(), then the layer is added to the sequential model (which is modified in place). To enable piping, the sequential model is also returned, invisibly.a
keras_input(), then the output tensor from callinglayer(input)is returned.NULLor missing, then aLayerinstance is returned.
Example
Here's an example of how the layer_torch_module_wrapper() can be used with vanilla
PyTorch modules.
# reticulate::py_install(
# packages = c("torch", "torchvision", "torchaudio"),
# envname = "r-keras",
# pip_options = c("--index-url https://download.pytorch.org/whl/cpu")
# )
library(keras3)
use_backend("torch")
torch <- reticulate::import("torch")
nn <- reticulate::import("torch.nn")
nnf <- reticulate::import("torch.nn.functional")
Classifier(keras$Model) \%py_class\% {
initialize <- function(...) {
super$initialize(...)
self$conv1 <- layer_torch_module_wrapper(module = nn$Conv2d(
in_channels = 1L,
out_channels = 32L,
kernel_size = tuple(3L, 3L)
))
self$conv2 <- layer_torch_module_wrapper(module = nn$Conv2d(
in_channels = 32L,
out_channels = 64L,
kernel_size = tuple(3L, 3L)
))
self$pool <- nn$MaxPool2d(kernel_size = tuple(2L, 2L))
self$flatten <- nn$Flatten()
self$dropout <- nn$Dropout(p = 0.5)
self$fc <-
layer_torch_module_wrapper(module = nn$Linear(1600L, 10L))
}
call <- function(inputs) {
x <- nnf$relu(self$conv1(inputs))
x <- self$pool(x)
x <- nnf$relu(self$conv2(x))
x <- self$pool(x)
x <- self$flatten(x)
x <- self$dropout(x)
x <- self$fc(x)
nnf$softmax(x, dim = 1L)
}
}
model <- Classifier()
model$build(shape(1, 28, 28))
cat("Output shape:", format(shape(model(torch$ones(1L, 1L, 28L, 28L)))))
model |> compile(loss = "sparse_categorical_crossentropy",
optimizer = "adam",
metrics = "accuracy")
model |> fit(train_loader, epochs = 5)See also
Other wrapping layers: layer_flax_module_wrapper() layer_jax_model_wrapper()
Other layers: Layer() layer_activation() layer_activation_elu() layer_activation_leaky_relu() layer_activation_parametric_relu() layer_activation_relu() layer_activation_softmax() layer_activity_regularization() layer_add() layer_additive_attention() layer_alpha_dropout() layer_attention() layer_aug_mix() layer_auto_contrast() layer_average() layer_average_pooling_1d() layer_average_pooling_2d() layer_average_pooling_3d() layer_batch_normalization() layer_bidirectional() layer_category_encoding() layer_center_crop() layer_concatenate() layer_conv_1d() layer_conv_1d_transpose() layer_conv_2d() layer_conv_2d_transpose() layer_conv_3d() layer_conv_3d_transpose() layer_conv_lstm_1d() layer_conv_lstm_2d() layer_conv_lstm_3d() layer_cropping_1d() layer_cropping_2d() layer_cropping_3d() layer_cut_mix() layer_dense() layer_depthwise_conv_1d() layer_depthwise_conv_2d() layer_discretization() layer_dot() layer_dropout() layer_einsum_dense() layer_embedding() layer_equalization() layer_feature_space() layer_flatten() layer_flax_module_wrapper() layer_gaussian_dropout() layer_gaussian_noise() layer_global_average_pooling_1d() layer_global_average_pooling_2d() layer_global_average_pooling_3d() layer_global_max_pooling_1d() layer_global_max_pooling_2d() layer_global_max_pooling_3d() layer_group_normalization() layer_group_query_attention() layer_gru() layer_hashed_crossing() layer_hashing() layer_identity() layer_integer_lookup() layer_jax_model_wrapper() layer_lambda() layer_layer_normalization() layer_lstm() layer_masking() layer_max_num_bounding_boxes() layer_max_pooling_1d() layer_max_pooling_2d() layer_max_pooling_3d() layer_maximum() layer_mel_spectrogram() layer_minimum() layer_mix_up() layer_multi_head_attention() layer_multiply() layer_normalization() layer_permute() layer_rand_augment() layer_random_brightness() layer_random_color_degeneration() layer_random_color_jitter() layer_random_contrast() layer_random_crop() layer_random_erasing() layer_random_flip() layer_random_gaussian_blur() layer_random_grayscale() layer_random_hue() layer_random_invert() layer_random_perspective() layer_random_posterization() layer_random_rotation() layer_random_saturation() layer_random_sharpness() layer_random_shear() layer_random_translation() layer_random_zoom() layer_repeat_vector() layer_rescaling() layer_reshape() layer_resizing() layer_rms_normalization() layer_rnn() layer_separable_conv_1d() layer_separable_conv_2d() layer_simple_rnn() layer_solarization() layer_spatial_dropout_1d() layer_spatial_dropout_2d() layer_spatial_dropout_3d() layer_spectral_normalization() layer_stft_spectrogram() layer_string_lookup() layer_subtract() layer_text_vectorization() layer_tfsm() layer_time_distributed() layer_unit_normalization() layer_upsampling_1d() layer_upsampling_2d() layer_upsampling_3d() layer_zero_padding_1d() layer_zero_padding_2d() layer_zero_padding_3d() rnn_cell_gru() rnn_cell_lstm() rnn_cell_simple() rnn_cells_stack()