Cropping layer for 3D data (e.g. spatial or spatio-temporal).
Source:R/layers-reshaping.R
      layer_cropping_3d.RdCropping layer for 3D data (e.g. spatial or spatio-temporal).
Arguments
- object
- Object to compose the layer with. A tensor, array, or sequential model. 
- cropping
- Int, or list of 3 ints, or list of 3 lists of 2 ints. - If int: the same symmetric cropping is applied to depth, height, and width. 
- If list of 3 ints: interpreted as three different symmetric cropping values for depth, height, and width: - (symmetric_dim1_crop, symmetric_dim2_crop, symmetric_dim3_crop).
- If list of 3 lists of 2 ints: interpreted as - ((left_dim1_crop, right_dim1_crop), (left_dim2_crop, right_dim2_crop), (left_dim3_crop, right_dim3_crop)).
 
- data_format
- A string, one of - "channels_last"(default) or- "channels_first". The ordering of the dimensions in the inputs.- "channels_last"corresponds to inputs with shape- (batch_size, spatial_dim1, spatial_dim2, spatial_dim3, channels)while- "channels_first"corresponds to inputs with shape- (batch_size, channels, spatial_dim1, spatial_dim2, spatial_dim3). When unspecified, uses- image_data_formatvalue found in your Keras config file at- ~/.keras/keras.json(if exists). Defaults to- "channels_last".
- ...
- For forward/backward compatability. 
Value
The return value depends on the value provided for the first argument.
If  object is:
- a - keras_model_sequential(), then the layer is added to the sequential model (which is modified in place). To enable piping, the sequential model is also returned, invisibly.
- a - keras_input(), then the output tensor from calling- layer(input)is returned.
- NULLor missing, then a- Layerinstance is returned.
Example
input_shape <- c(2, 28, 28, 10, 3)
x <- input_shape %>% { op_reshape(seq(prod(.)), .) }
y <- x |> layer_cropping_3d(cropping = c(2, 4, 2))
shape(y)Input Shape
5D tensor with shape:
- If - data_formatis- "channels_last":- (batch_size, first_axis_to_crop, second_axis_to_crop, third_axis_to_crop, channels)
- If - data_formatis- "channels_first":- (batch_size, channels, first_axis_to_crop, second_axis_to_crop, third_axis_to_crop)
Output Shape
5D tensor with shape:
- If - data_formatis- "channels_last":- (batch_size, first_cropped_axis, second_cropped_axis, third_cropped_axis, channels)
- If - data_formatis- "channels_first":- (batch_size, channels, first_cropped_axis, second_cropped_axis, third_cropped_axis)
See also
Other reshaping layers: layer_cropping_1d() layer_cropping_2d() layer_flatten() layer_permute() layer_repeat_vector() layer_reshape() layer_upsampling_1d() layer_upsampling_2d() layer_upsampling_3d() layer_zero_padding_1d() layer_zero_padding_2d() layer_zero_padding_3d() 
Other layers: Layer() layer_activation() layer_activation_elu() layer_activation_leaky_relu() layer_activation_parametric_relu() layer_activation_relu() layer_activation_softmax() layer_activity_regularization() layer_add() layer_additive_attention() layer_alpha_dropout() layer_attention() layer_aug_mix() layer_auto_contrast() layer_average() layer_average_pooling_1d() layer_average_pooling_2d() layer_average_pooling_3d() layer_batch_normalization() layer_bidirectional() layer_category_encoding() layer_center_crop() layer_concatenate() layer_conv_1d() layer_conv_1d_transpose() layer_conv_2d() layer_conv_2d_transpose() layer_conv_3d() layer_conv_3d_transpose() layer_conv_lstm_1d() layer_conv_lstm_2d() layer_conv_lstm_3d() layer_cropping_1d() layer_cropping_2d() layer_cut_mix() layer_dense() layer_depthwise_conv_1d() layer_depthwise_conv_2d() layer_discretization() layer_dot() layer_dropout() layer_einsum_dense() layer_embedding() layer_equalization() layer_feature_space() layer_flatten() layer_flax_module_wrapper() layer_gaussian_dropout() layer_gaussian_noise() layer_global_average_pooling_1d() layer_global_average_pooling_2d() layer_global_average_pooling_3d() layer_global_max_pooling_1d() layer_global_max_pooling_2d() layer_global_max_pooling_3d() layer_group_normalization() layer_group_query_attention() layer_gru() layer_hashed_crossing() layer_hashing() layer_identity() layer_integer_lookup() layer_jax_model_wrapper() layer_lambda() layer_layer_normalization() layer_lstm() layer_masking() layer_max_num_bounding_boxes() layer_max_pooling_1d() layer_max_pooling_2d() layer_max_pooling_3d() layer_maximum() layer_mel_spectrogram() layer_minimum() layer_mix_up() layer_multi_head_attention() layer_multiply() layer_normalization() layer_permute() layer_rand_augment() layer_random_brightness() layer_random_color_degeneration() layer_random_color_jitter() layer_random_contrast() layer_random_crop() layer_random_erasing() layer_random_flip() layer_random_gaussian_blur() layer_random_grayscale() layer_random_hue() layer_random_invert() layer_random_perspective() layer_random_posterization() layer_random_rotation() layer_random_saturation() layer_random_sharpness() layer_random_shear() layer_random_translation() layer_random_zoom() layer_repeat_vector() layer_rescaling() layer_reshape() layer_resizing() layer_rms_normalization() layer_rnn() layer_separable_conv_1d() layer_separable_conv_2d() layer_simple_rnn() layer_solarization() layer_spatial_dropout_1d() layer_spatial_dropout_2d() layer_spatial_dropout_3d() layer_spectral_normalization() layer_stft_spectrogram() layer_string_lookup() layer_subtract() layer_text_vectorization() layer_tfsm() layer_time_distributed() layer_torch_module_wrapper() layer_unit_normalization() layer_upsampling_1d() layer_upsampling_2d() layer_upsampling_3d() layer_zero_padding_1d() layer_zero_padding_2d() layer_zero_padding_3d() rnn_cell_gru() rnn_cell_lstm() rnn_cell_simple() rnn_cells_stack()