Similar to an LSTM layer, but the input transformations and recurrent transformations are both convolutional.
Usage
layer_conv_lstm_1d(
object,
filters,
kernel_size,
strides = 1L,
padding = "valid",
data_format = NULL,
dilation_rate = 1L,
activation = "tanh",
recurrent_activation = "sigmoid",
use_bias = TRUE,
kernel_initializer = "glorot_uniform",
recurrent_initializer = "orthogonal",
bias_initializer = "zeros",
unit_forget_bias = TRUE,
kernel_regularizer = NULL,
recurrent_regularizer = NULL,
bias_regularizer = NULL,
activity_regularizer = NULL,
kernel_constraint = NULL,
recurrent_constraint = NULL,
bias_constraint = NULL,
dropout = 0,
recurrent_dropout = 0,
seed = NULL,
return_sequences = FALSE,
return_state = FALSE,
go_backwards = FALSE,
stateful = FALSE,
...,
unroll = NULL
)Arguments
- object
Object to compose the layer with. A tensor, array, or sequential model.
- filters
int, the dimension of the output space (the number of filters in the convolution).
- kernel_size
int or tuple/list of 1 integer, specifying the size of the convolution window.
- strides
int or tuple/list of 1 integer, specifying the stride length of the convolution.
strides > 1is incompatible withdilation_rate > 1.- padding
string,
"valid"or"same"(case-insensitive)."valid"means no padding."same"results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input.- data_format
string, either
"channels_last"or"channels_first". The ordering of the dimensions in the inputs."channels_last"corresponds to inputs with shape(batch, steps, features)while"channels_first"corresponds to inputs with shape(batch, features, steps). It defaults to theimage_data_formatvalue found in your Keras config file at~/.keras/keras.json. If you never set it, then it will be"channels_last".- dilation_rate
int or tuple/list of 1 integers, specifying the dilation rate to use for dilated convolution.
- activation
Activation function to use. By default hyperbolic tangent activation function is applied (
tanh(x)).- recurrent_activation
Activation function to use for the recurrent step.
- use_bias
Boolean, whether the layer uses a bias vector.
- kernel_initializer
Initializer for the
kernelweights matrix, used for the linear transformation of the inputs.- recurrent_initializer
Initializer for the
recurrent_kernelweights matrix, used for the linear transformation of the recurrent state.- bias_initializer
Initializer for the bias vector.
- unit_forget_bias
Boolean. If
TRUE, add 1 to the bias of the forget gate at initialization. Use in combination withbias_initializer="zeros". This is recommended in Jozefowicz et al., 2015- kernel_regularizer
Regularizer function applied to the
kernelweights matrix.- recurrent_regularizer
Regularizer function applied to the
recurrent_kernelweights matrix.- bias_regularizer
Regularizer function applied to the bias vector.
- activity_regularizer
Regularizer function applied to.
- kernel_constraint
Constraint function applied to the
kernelweights matrix.- recurrent_constraint
Constraint function applied to the
recurrent_kernelweights matrix.- bias_constraint
Constraint function applied to the bias vector.
- dropout
Float between 0 and 1. Fraction of the units to drop for the linear transformation of the inputs.
- recurrent_dropout
Float between 0 and 1. Fraction of the units to drop for the linear transformation of the recurrent state.
- seed
Random seed for dropout.
- return_sequences
Boolean. Whether to return the last output in the output sequence, or the full sequence. Default:
FALSE.- return_state
Boolean. Whether to return the last state in addition to the output. Default:
FALSE.- go_backwards
Boolean (default:
FALSE). IfTRUE, process the input sequence backwards and return the reversed sequence.- stateful
Boolean (default
FALSE). IfTRUE, the last state for each sample at index i in a batch will be used as initial state for the sample of index i in the following batch.- ...
For forward/backward compatability.
- unroll
Boolean (default:
FALSE). IfTRUE, the network will be unrolled, else a symbolic loop will be used. Unrolling can speed-up a RNN, although it tends to be more memory-intensive. Unrolling is only suitable for short sequences.
Value
The return value depends on the value provided for the first argument.
If object is:
a
keras_model_sequential(), then the layer is added to the sequential model (which is modified in place). To enable piping, the sequential model is also returned, invisibly.a
keras_input(), then the output tensor from callinglayer(input)is returned.NULLor missing, then aLayerinstance is returned.
Call Arguments
inputs: A 4D tensor.initial_state: List of initial state tensors to be passed to the first call of the cell.mask: Binary tensor of shape(samples, timesteps)indicating whether a given timestep should be masked.training: Python boolean indicating whether the layer should behave in training mode or in inference mode. This is only relevant ifdropoutorrecurrent_dropoutare set.
Input Shape
If
data_format="channels_first": 4D tensor with shape:(samples, time, channels, rows)If
data_format="channels_last": 4D tensor with shape:(samples, time, rows, channels)
Output Shape
If
return_state: a list of tensors. The first tensor is the output. The remaining tensors are the last states, each 3D tensor with shape:(samples, filters, new_rows)ifdata_format='channels_first'or shape:(samples, new_rows, filters)ifdata_format='channels_last'.rowsvalues might have changed due to padding.If
return_sequences: 4D tensor with shape:(samples, timesteps, filters, new_rows)if data_format='channels_first' or shape:(samples, timesteps, new_rows, filters)ifdata_format='channels_last'.Else, 3D tensor with shape:
(samples, filters, new_rows)ifdata_format='channels_first'or shape:(samples, new_rows, filters)ifdata_format='channels_last'.
References
Shi et al., 2015 (the current implementation does not include the feedback loop on the cells output).
See also
Other rnn layers: layer_bidirectional() layer_conv_lstm_2d() layer_conv_lstm_3d() layer_gru() layer_lstm() layer_rnn() layer_simple_rnn() layer_time_distributed() rnn_cell_gru() rnn_cell_lstm() rnn_cell_simple() rnn_cells_stack()
Other layers: Layer() layer_activation() layer_activation_elu() layer_activation_leaky_relu() layer_activation_parametric_relu() layer_activation_relu() layer_activation_softmax() layer_activity_regularization() layer_add() layer_additive_attention() layer_alpha_dropout() layer_attention() layer_aug_mix() layer_auto_contrast() layer_average() layer_average_pooling_1d() layer_average_pooling_2d() layer_average_pooling_3d() layer_batch_normalization() layer_bidirectional() layer_category_encoding() layer_center_crop() layer_concatenate() layer_conv_1d() layer_conv_1d_transpose() layer_conv_2d() layer_conv_2d_transpose() layer_conv_3d() layer_conv_3d_transpose() layer_conv_lstm_2d() layer_conv_lstm_3d() layer_cropping_1d() layer_cropping_2d() layer_cropping_3d() layer_cut_mix() layer_dense() layer_depthwise_conv_1d() layer_depthwise_conv_2d() layer_discretization() layer_dot() layer_dropout() layer_einsum_dense() layer_embedding() layer_equalization() layer_feature_space() layer_flatten() layer_flax_module_wrapper() layer_gaussian_dropout() layer_gaussian_noise() layer_global_average_pooling_1d() layer_global_average_pooling_2d() layer_global_average_pooling_3d() layer_global_max_pooling_1d() layer_global_max_pooling_2d() layer_global_max_pooling_3d() layer_group_normalization() layer_group_query_attention() layer_gru() layer_hashed_crossing() layer_hashing() layer_identity() layer_integer_lookup() layer_jax_model_wrapper() layer_lambda() layer_layer_normalization() layer_lstm() layer_masking() layer_max_num_bounding_boxes() layer_max_pooling_1d() layer_max_pooling_2d() layer_max_pooling_3d() layer_maximum() layer_mel_spectrogram() layer_minimum() layer_mix_up() layer_multi_head_attention() layer_multiply() layer_normalization() layer_permute() layer_rand_augment() layer_random_brightness() layer_random_color_degeneration() layer_random_color_jitter() layer_random_contrast() layer_random_crop() layer_random_erasing() layer_random_flip() layer_random_gaussian_blur() layer_random_grayscale() layer_random_hue() layer_random_invert() layer_random_perspective() layer_random_posterization() layer_random_rotation() layer_random_saturation() layer_random_sharpness() layer_random_shear() layer_random_translation() layer_random_zoom() layer_repeat_vector() layer_rescaling() layer_reshape() layer_resizing() layer_rms_normalization() layer_rnn() layer_separable_conv_1d() layer_separable_conv_2d() layer_simple_rnn() layer_solarization() layer_spatial_dropout_1d() layer_spatial_dropout_2d() layer_spatial_dropout_3d() layer_spectral_normalization() layer_stft_spectrogram() layer_string_lookup() layer_subtract() layer_text_vectorization() layer_tfsm() layer_time_distributed() layer_torch_module_wrapper() layer_unit_normalization() layer_upsampling_1d() layer_upsampling_2d() layer_upsampling_3d() layer_zero_padding_1d() layer_zero_padding_2d() layer_zero_padding_3d() rnn_cell_gru() rnn_cell_lstm() rnn_cell_simple() rnn_cells_stack()