Zero-padding layer for 3D data (spatial or spatio-temporal).
Source:R/layers-reshaping.R
layer_zero_padding_3d.RdZero-padding layer for 3D data (spatial or spatio-temporal).
Arguments
- object
Object to compose the layer with. A tensor, array, or sequential model.
- padding
Int, or list of 3 ints, or list of 3 lists of 2 ints.
If int: the same symmetric padding is applied to depth, height, and width.
If list of 3 ints: interpreted as three different symmetric padding values for depth, height, and width:
(symmetric_dim1_pad, symmetric_dim2_pad, symmetric_dim3_pad).If list of 3 lists of 2 ints: interpreted as
((left_dim1_pad, right_dim1_pad), (left_dim2_pad, right_dim2_pad), (left_dim3_pad, right_dim3_pad)).
- data_format
A string, one of
"channels_last"(default) or"channels_first". The ordering of the dimensions in the inputs."channels_last"corresponds to inputs with shape(batch_size, spatial_dim1, spatial_dim2, spatial_dim3, channels)while"channels_first"corresponds to inputs with shape(batch_size, channels, spatial_dim1, spatial_dim2, spatial_dim3). When unspecified, usesimage_data_formatvalue found in your Keras config file at~/.keras/keras.json(if exists). Defaults to"channels_last".- ...
For forward/backward compatability.
Value
The return value depends on the value provided for the first argument.
If object is:
a
keras_model_sequential(), then the layer is added to the sequential model (which is modified in place). To enable piping, the sequential model is also returned, invisibly.a
keras_input(), then the output tensor from callinglayer(input)is returned.NULLor missing, then aLayerinstance is returned.
Example
input_shape <- c(1, 1, 2, 2, 3)
x <- op_reshape(seq_len(prod(input_shape)), input_shape)
x## tf.Tensor(
## [[[[[ 1 2 3]
## [ 4 5 6]]
##
## [[ 7 8 9]
## [10 11 12]]]]], shape=(1, 1, 2, 2, 3), dtype=int32)
y <- layer_zero_padding_3d(x, padding = 2)
shape(y)Input Shape
5D tensor with shape:
If
data_formatis"channels_last":(batch_size, first_axis_to_pad, second_axis_to_pad, third_axis_to_pad, depth)If
data_formatis"channels_first":(batch_size, depth, first_axis_to_pad, second_axis_to_pad, third_axis_to_pad)
Output Shape
5D tensor with shape:
If
data_formatis"channels_last":(batch_size, first_padded_axis, second_padded_axis, third_axis_to_pad, depth)If
data_formatis"channels_first":(batch_size, depth, first_padded_axis, second_padded_axis, third_axis_to_pad)
See also
Other reshaping layers: layer_cropping_1d() layer_cropping_2d() layer_cropping_3d() layer_flatten() layer_permute() layer_repeat_vector() layer_reshape() layer_upsampling_1d() layer_upsampling_2d() layer_upsampling_3d() layer_zero_padding_1d() layer_zero_padding_2d()
Other layers: Layer() layer_activation() layer_activation_elu() layer_activation_leaky_relu() layer_activation_parametric_relu() layer_activation_relu() layer_activation_softmax() layer_activity_regularization() layer_add() layer_additive_attention() layer_alpha_dropout() layer_attention() layer_aug_mix() layer_auto_contrast() layer_average() layer_average_pooling_1d() layer_average_pooling_2d() layer_average_pooling_3d() layer_batch_normalization() layer_bidirectional() layer_category_encoding() layer_center_crop() layer_concatenate() layer_conv_1d() layer_conv_1d_transpose() layer_conv_2d() layer_conv_2d_transpose() layer_conv_3d() layer_conv_3d_transpose() layer_conv_lstm_1d() layer_conv_lstm_2d() layer_conv_lstm_3d() layer_cropping_1d() layer_cropping_2d() layer_cropping_3d() layer_cut_mix() layer_dense() layer_depthwise_conv_1d() layer_depthwise_conv_2d() layer_discretization() layer_dot() layer_dropout() layer_einsum_dense() layer_embedding() layer_equalization() layer_feature_space() layer_flatten() layer_flax_module_wrapper() layer_gaussian_dropout() layer_gaussian_noise() layer_global_average_pooling_1d() layer_global_average_pooling_2d() layer_global_average_pooling_3d() layer_global_max_pooling_1d() layer_global_max_pooling_2d() layer_global_max_pooling_3d() layer_group_normalization() layer_group_query_attention() layer_gru() layer_hashed_crossing() layer_hashing() layer_identity() layer_integer_lookup() layer_jax_model_wrapper() layer_lambda() layer_layer_normalization() layer_lstm() layer_masking() layer_max_num_bounding_boxes() layer_max_pooling_1d() layer_max_pooling_2d() layer_max_pooling_3d() layer_maximum() layer_mel_spectrogram() layer_minimum() layer_mix_up() layer_multi_head_attention() layer_multiply() layer_normalization() layer_permute() layer_rand_augment() layer_random_brightness() layer_random_color_degeneration() layer_random_color_jitter() layer_random_contrast() layer_random_crop() layer_random_erasing() layer_random_flip() layer_random_gaussian_blur() layer_random_grayscale() layer_random_hue() layer_random_invert() layer_random_perspective() layer_random_posterization() layer_random_rotation() layer_random_saturation() layer_random_sharpness() layer_random_shear() layer_random_translation() layer_random_zoom() layer_repeat_vector() layer_rescaling() layer_reshape() layer_resizing() layer_rms_normalization() layer_rnn() layer_separable_conv_1d() layer_separable_conv_2d() layer_simple_rnn() layer_solarization() layer_spatial_dropout_1d() layer_spatial_dropout_2d() layer_spatial_dropout_3d() layer_spectral_normalization() layer_stft_spectrogram() layer_string_lookup() layer_subtract() layer_text_vectorization() layer_tfsm() layer_time_distributed() layer_torch_module_wrapper() layer_unit_normalization() layer_upsampling_1d() layer_upsampling_2d() layer_upsampling_3d() layer_zero_padding_1d() layer_zero_padding_2d() rnn_cell_gru() rnn_cell_lstm() rnn_cell_simple() rnn_cells_stack()