The implementation uses interpolative resizing, given the resize method
(specified by the interpolation argument). Use interpolation=nearest
to repeat the rows and columns of the data.
Usage
layer_upsampling_2d(
object,
size = list(2L, 2L),
data_format = NULL,
interpolation = "nearest",
...
)Arguments
- object
Object to compose the layer with. A tensor, array, or sequential model.
- size
Int, or list of 2 integers. The upsampling factors for rows and columns.
- data_format
A string, one of
"channels_last"(default) or"channels_first". The ordering of the dimensions in the inputs."channels_last"corresponds to inputs with shape(batch_size, height, width, channels)while"channels_first"corresponds to inputs with shape(batch_size, channels, height, width). When unspecified, usesimage_data_formatvalue found in your Keras config file at~/.keras/keras.json(if exists) else"channels_last". Defaults to"channels_last".- interpolation
A string, one of
"bicubic","bilinear","lanczos3","lanczos5","nearest".- ...
For forward/backward compatability.
Value
The return value depends on the value provided for the first argument.
If object is:
a
keras_model_sequential(), then the layer is added to the sequential model (which is modified in place). To enable piping, the sequential model is also returned, invisibly.a
keras_input(), then the output tensor from callinglayer(input)is returned.NULLor missing, then aLayerinstance is returned.
Example
input_shape <- c(2, 2, 1, 3)
x <- op_reshape(seq_len(prod(input_shape)), input_shape)
print(x)## tf.Tensor(
## [[[[ 1 2 3]]
##
## [[ 4 5 6]]]
##
##
## [[[ 7 8 9]]
##
## [[10 11 12]]]], shape=(2, 2, 1, 3), dtype=int32)
y <- layer_upsampling_2d(x, size = c(1, 2))
print(y)Input Shape
4D tensor with shape:
If
data_formatis"channels_last":(batch_size, rows, cols, channels)If
data_formatis"channels_first":(batch_size, channels, rows, cols)
Output Shape
4D tensor with shape:
If
data_formatis"channels_last":(batch_size, upsampled_rows, upsampled_cols, channels)If
data_formatis"channels_first":(batch_size, channels, upsampled_rows, upsampled_cols)
See also
Other reshaping layers: layer_cropping_1d() layer_cropping_2d() layer_cropping_3d() layer_flatten() layer_permute() layer_repeat_vector() layer_reshape() layer_upsampling_1d() layer_upsampling_3d() layer_zero_padding_1d() layer_zero_padding_2d() layer_zero_padding_3d()
Other layers: Layer() layer_activation() layer_activation_elu() layer_activation_leaky_relu() layer_activation_parametric_relu() layer_activation_relu() layer_activation_softmax() layer_activity_regularization() layer_add() layer_additive_attention() layer_alpha_dropout() layer_attention() layer_aug_mix() layer_auto_contrast() layer_average() layer_average_pooling_1d() layer_average_pooling_2d() layer_average_pooling_3d() layer_batch_normalization() layer_bidirectional() layer_category_encoding() layer_center_crop() layer_concatenate() layer_conv_1d() layer_conv_1d_transpose() layer_conv_2d() layer_conv_2d_transpose() layer_conv_3d() layer_conv_3d_transpose() layer_conv_lstm_1d() layer_conv_lstm_2d() layer_conv_lstm_3d() layer_cropping_1d() layer_cropping_2d() layer_cropping_3d() layer_cut_mix() layer_dense() layer_depthwise_conv_1d() layer_depthwise_conv_2d() layer_discretization() layer_dot() layer_dropout() layer_einsum_dense() layer_embedding() layer_equalization() layer_feature_space() layer_flatten() layer_flax_module_wrapper() layer_gaussian_dropout() layer_gaussian_noise() layer_global_average_pooling_1d() layer_global_average_pooling_2d() layer_global_average_pooling_3d() layer_global_max_pooling_1d() layer_global_max_pooling_2d() layer_global_max_pooling_3d() layer_group_normalization() layer_group_query_attention() layer_gru() layer_hashed_crossing() layer_hashing() layer_identity() layer_integer_lookup() layer_jax_model_wrapper() layer_lambda() layer_layer_normalization() layer_lstm() layer_masking() layer_max_num_bounding_boxes() layer_max_pooling_1d() layer_max_pooling_2d() layer_max_pooling_3d() layer_maximum() layer_mel_spectrogram() layer_minimum() layer_mix_up() layer_multi_head_attention() layer_multiply() layer_normalization() layer_permute() layer_rand_augment() layer_random_brightness() layer_random_color_degeneration() layer_random_color_jitter() layer_random_contrast() layer_random_crop() layer_random_erasing() layer_random_flip() layer_random_gaussian_blur() layer_random_grayscale() layer_random_hue() layer_random_invert() layer_random_perspective() layer_random_posterization() layer_random_rotation() layer_random_saturation() layer_random_sharpness() layer_random_shear() layer_random_translation() layer_random_zoom() layer_repeat_vector() layer_rescaling() layer_reshape() layer_resizing() layer_rms_normalization() layer_rnn() layer_separable_conv_1d() layer_separable_conv_2d() layer_simple_rnn() layer_solarization() layer_spatial_dropout_1d() layer_spatial_dropout_2d() layer_spatial_dropout_3d() layer_spectral_normalization() layer_stft_spectrogram() layer_string_lookup() layer_subtract() layer_text_vectorization() layer_tfsm() layer_time_distributed() layer_torch_module_wrapper() layer_unit_normalization() layer_upsampling_1d() layer_upsampling_3d() layer_zero_padding_1d() layer_zero_padding_2d() layer_zero_padding_3d() rnn_cell_gru() rnn_cell_lstm() rnn_cell_simple() rnn_cells_stack()