One-stop utility for preprocessing and encoding structured data.
Source:R/feature-space.R
layer_feature_space.RdAvailable feature types:
Note that all features can be referred to by their string name,
e.g. "integer_categorical". When using the string name, the default
argument values are used.
# Plain float values.
feature_float(name = NULL)
# Float values to be preprocessed via featurewise standardization
# (i.e. via a `layer_normalization()` layer).
feature_float_normalized(name = NULL)
# Float values to be preprocessed via linear rescaling
# (i.e. via a `layer_rescaling` layer).
feature_float_rescaled(scale = 1., offset = 0., name = NULL)
# Float values to be discretized. By default, the discrete
# representation will then be one-hot encoded.
feature_float_discretized(
num_bins,
bin_boundaries = NULL,
output_mode = "one_hot",
name = NULL
)
# Integer values to be indexed. By default, the discrete
# representation will then be one-hot encoded.
feature_integer_categorical(
max_tokens = NULL,
num_oov_indices = 1,
output_mode = "one_hot",
name = NULL
)
# String values to be indexed. By default, the discrete
# representation will then be one-hot encoded.
feature_string_categorical(
max_tokens = NULL,
num_oov_indices = 1,
output_mode = "one_hot",
name = NULL
)
# Integer values to be hashed into a fixed number of bins.
# By default, the discrete representation will then be one-hot encoded.
feature_integer_hashed(num_bins, output_mode = "one_hot", name = NULL)
# String values to be hashed into a fixed number of bins.
# By default, the discrete representation will then be one-hot encoded.
feature_string_hashed(num_bins, output_mode = "one_hot", name = NULL)Usage
layer_feature_space(
object,
features,
output_mode = "concat",
crosses = NULL,
crossing_dim = 32L,
hashing_dim = 32L,
num_discretization_bins = 32L,
name = NULL,
feature_names = NULL
)
feature_cross(feature_names, crossing_dim, output_mode = "one_hot")
feature_custom(dtype, preprocessor, output_mode)
feature_float(name = NULL)
feature_float_rescaled(scale = 1, offset = 0, name = NULL)
feature_float_normalized(name = NULL)
feature_float_discretized(
num_bins,
bin_boundaries = NULL,
output_mode = "one_hot",
name = NULL
)
feature_integer_categorical(
max_tokens = NULL,
num_oov_indices = 1,
output_mode = "one_hot",
name = NULL
)
feature_string_categorical(
max_tokens = NULL,
num_oov_indices = 1,
output_mode = "one_hot",
name = NULL
)
feature_string_hashed(num_bins, output_mode = "one_hot", name = NULL)
feature_integer_hashed(num_bins, output_mode = "one_hot", name = NULL)Arguments
- object
see description
- features
see description
- output_mode
A string.
For
layer_feature_space(), one of"concat"or"dict". In concat mode, all features get concatenated together into a single vector. In dict mode, theFeatureSpacereturns a named list of individually encoded features (with the same names as the input list names).For the
feature_*functions, one of:"int""one_hot"or"float".
- crosses
List of features to be crossed together, e.g.
crosses=list(c("feature_1", "feature_2")). The features will be "crossed" by hashing their combined value into a fixed-length vector.- crossing_dim
Default vector size for hashing crossed features. Defaults to
32.- hashing_dim
Default vector size for hashing features of type
"integer_hashed"and"string_hashed". Defaults to32.- num_discretization_bins
Default number of bins to be used for discretizing features of type
"float_discretized". Defaults to32.- name
String, name for the object
- feature_names
Named list mapping the names of your features to their type specification, e.g.
list(my_feature = "integer_categorical")orlist(my_feature = feature_integer_categorical()). For a complete list of all supported types, see "Available feature types" paragraph below.- dtype
string, the output dtype of the feature. E.g., "float32".
- preprocessor
A callable.
- scale, offset
Passed on to
layer_rescaling()- num_bins, bin_boundaries
Passed on to
layer_discretization()- max_tokens, num_oov_indices
Passed on to
layer_integer_lookup()byfeature_integer_categorical()or tolayer_string_lookup()byfeature_string_categorical().
Value
The return value depends on the value provided for the first argument.
If object is:
a
keras_model_sequential(), then the layer is added to the sequential model (which is modified in place). To enable piping, the sequential model is also returned, invisibly.a
keras_input(), then the output tensor from callinglayer(input)is returned.NULLor missing, then aLayerinstance is returned.
Examples
Basic usage with a named list of input data:
raw_data <- list(
float_values = c(0.0, 0.1, 0.2, 0.3),
string_values = c("zero", "one", "two", "three"),
int_values = as.integer(c(0, 1, 2, 3))
)
dataset <- tfdatasets::tensor_slices_dataset(raw_data)
feature_space <- layer_feature_space(
features = list(
float_values = "float_normalized",
string_values = "string_categorical",
int_values = "integer_categorical"
),
crosses = list(c("string_values", "int_values")),
output_mode = "concat"
)
# Before you start using the feature_space(),
# you must `adapt()` it on some data.
feature_space |> adapt(dataset)
# You can call the feature_space() on a named list of
# data (batched or unbatched).
output_vector <- feature_space(raw_data)Basic usage with tf.data:
library(tfdatasets)
# Unlabeled data
preprocessed_ds <- unlabeled_dataset |>
dataset_map(feature_space)
# Labeled data
preprocessed_ds <- labeled_dataset |>
dataset_map(function(x, y) tuple(feature_space(x), y))Basic usage with the Keras Functional API:
# Retrieve a named list of Keras layer_input() objects
(inputs <- feature_space$get_inputs())## $float_values
## <KerasTensor shape=(None, 1), dtype=float32, sparse=False, ragged=False, name=float_values>
##
## $string_values
## <KerasTensor shape=(None, 1), dtype=string, sparse=False, ragged=False, name=string_values>
##
## $int_values
## <KerasTensor shape=(None, 1), dtype=int32, sparse=False, ragged=False, name=int_values>
# Retrieve the corresponding encoded Keras tensors
(encoded_features <- feature_space$get_encoded_features())# Build a Functional model
outputs <- encoded_features |> layer_dense(1, activation = "sigmoid")
model <- keras_model(inputs, outputs)Customizing each feature or feature cross:
feature_space <- layer_feature_space(
features = list(
float_values = feature_float_normalized(),
string_values = feature_string_categorical(max_tokens = 10),
int_values = feature_integer_categorical(max_tokens = 10)
),
crosses = list(
feature_cross(c("string_values", "int_values"), crossing_dim = 32)
),
output_mode = "concat"
)Returning a dict (a named list) of integer-encoded features:
feature_space <- layer_feature_space(
features = list(
"string_values" = feature_string_categorical(output_mode = "int"),
"int_values" = feature_integer_categorical(output_mode = "int")
),
crosses = list(
feature_cross(
feature_names = c("string_values", "int_values"),
crossing_dim = 32,
output_mode = "int"
)
),
output_mode = "dict"
)Specifying your own Keras preprocessing layer:
# Let's say that one of the features is a short text paragraph that
# we want to encode as a vector (one vector per paragraph) via TF-IDF.
data <- list(text = c("1st string", "2nd string", "3rd string"))
# There's a Keras layer for this: layer_text_vectorization()
custom_layer <- layer_text_vectorization(output_mode = "tf_idf")
# We can use feature_custom() to create a custom feature
# that will use our preprocessing layer.
feature_space <- layer_feature_space(
features = list(
text = feature_custom(preprocessor = custom_layer,
dtype = "string",
output_mode = "float"
)
),
output_mode = "concat"
)
feature_space |> adapt(tfdatasets::tensor_slices_dataset(data))
output_vector <- feature_space(data)Retrieving the underlying Keras preprocessing layers:
# The preprocessing layer of each feature is available in `$preprocessors`.
preprocessing_layer <- feature_space$preprocessors$feature1
# The crossing layer of each feature cross is available in `$crossers`.
# It's an instance of layer_hashed_crossing()
crossing_layer <- feature_space$crossers[["feature1_X_feature2"]]Saving and reloading a FeatureSpace:
feature_space$save("featurespace.keras")
reloaded_feature_space <- keras$models$load_model("featurespace.keras")See also
Other preprocessing layers: layer_aug_mix() layer_auto_contrast() layer_category_encoding() layer_center_crop() layer_cut_mix() layer_discretization() layer_equalization() layer_hashed_crossing() layer_hashing() layer_integer_lookup() layer_max_num_bounding_boxes() layer_mel_spectrogram() layer_mix_up() layer_normalization() layer_rand_augment() layer_random_brightness() layer_random_color_degeneration() layer_random_color_jitter() layer_random_contrast() layer_random_crop() layer_random_erasing() layer_random_flip() layer_random_gaussian_blur() layer_random_grayscale() layer_random_hue() layer_random_invert() layer_random_perspective() layer_random_posterization() layer_random_rotation() layer_random_saturation() layer_random_sharpness() layer_random_shear() layer_random_translation() layer_random_zoom() layer_rescaling() layer_resizing() layer_solarization() layer_stft_spectrogram() layer_string_lookup() layer_text_vectorization()
Other layers: Layer() layer_activation() layer_activation_elu() layer_activation_leaky_relu() layer_activation_parametric_relu() layer_activation_relu() layer_activation_softmax() layer_activity_regularization() layer_add() layer_additive_attention() layer_alpha_dropout() layer_attention() layer_aug_mix() layer_auto_contrast() layer_average() layer_average_pooling_1d() layer_average_pooling_2d() layer_average_pooling_3d() layer_batch_normalization() layer_bidirectional() layer_category_encoding() layer_center_crop() layer_concatenate() layer_conv_1d() layer_conv_1d_transpose() layer_conv_2d() layer_conv_2d_transpose() layer_conv_3d() layer_conv_3d_transpose() layer_conv_lstm_1d() layer_conv_lstm_2d() layer_conv_lstm_3d() layer_cropping_1d() layer_cropping_2d() layer_cropping_3d() layer_cut_mix() layer_dense() layer_depthwise_conv_1d() layer_depthwise_conv_2d() layer_discretization() layer_dot() layer_dropout() layer_einsum_dense() layer_embedding() layer_equalization() layer_flatten() layer_flax_module_wrapper() layer_gaussian_dropout() layer_gaussian_noise() layer_global_average_pooling_1d() layer_global_average_pooling_2d() layer_global_average_pooling_3d() layer_global_max_pooling_1d() layer_global_max_pooling_2d() layer_global_max_pooling_3d() layer_group_normalization() layer_group_query_attention() layer_gru() layer_hashed_crossing() layer_hashing() layer_identity() layer_integer_lookup() layer_jax_model_wrapper() layer_lambda() layer_layer_normalization() layer_lstm() layer_masking() layer_max_num_bounding_boxes() layer_max_pooling_1d() layer_max_pooling_2d() layer_max_pooling_3d() layer_maximum() layer_mel_spectrogram() layer_minimum() layer_mix_up() layer_multi_head_attention() layer_multiply() layer_normalization() layer_permute() layer_rand_augment() layer_random_brightness() layer_random_color_degeneration() layer_random_color_jitter() layer_random_contrast() layer_random_crop() layer_random_erasing() layer_random_flip() layer_random_gaussian_blur() layer_random_grayscale() layer_random_hue() layer_random_invert() layer_random_perspective() layer_random_posterization() layer_random_rotation() layer_random_saturation() layer_random_sharpness() layer_random_shear() layer_random_translation() layer_random_zoom() layer_repeat_vector() layer_rescaling() layer_reshape() layer_resizing() layer_rms_normalization() layer_rnn() layer_separable_conv_1d() layer_separable_conv_2d() layer_simple_rnn() layer_solarization() layer_spatial_dropout_1d() layer_spatial_dropout_2d() layer_spatial_dropout_3d() layer_spectral_normalization() layer_stft_spectrogram() layer_string_lookup() layer_subtract() layer_text_vectorization() layer_tfsm() layer_time_distributed() layer_torch_module_wrapper() layer_unit_normalization() layer_upsampling_1d() layer_upsampling_2d() layer_upsampling_3d() layer_zero_padding_1d() layer_zero_padding_2d() layer_zero_padding_3d() rnn_cell_gru() rnn_cell_lstm() rnn_cell_simple() rnn_cells_stack()
Other utils: audio_dataset_from_directory() clear_session() config_disable_interactive_logging() config_disable_traceback_filtering() config_enable_interactive_logging() config_enable_traceback_filtering() config_is_interactive_logging_enabled() config_is_traceback_filtering_enabled() get_file() get_source_inputs() image_array_save() image_dataset_from_directory() image_from_array() image_load() image_smart_resize() image_to_array() normalize() pad_sequences() set_random_seed() split_dataset() text_dataset_from_directory() timeseries_dataset_from_array() to_categorical() zip_lists()