A model is a directed acyclic graph of layers.
Arguments
- inputs
Input tensor(s) (from
keras_input())- outputs
Output tensors (from calling layers with
inputs)- ...
Any additional arguments
Examples
library(keras3)
# input tensor
inputs <- keras_input(shape = c(784))
# outputs compose input + dense layers
predictions <- inputs |>
layer_dense(units = 64, activation = 'relu') |>
layer_dense(units = 64, activation = 'relu') |>
layer_dense(units = 10, activation = 'softmax')
# create and compile model
model <- keras_model(inputs = inputs, outputs = predictions)
model |> compile(
optimizer = 'rmsprop',
loss = 'categorical_crossentropy',
metrics = c('accuracy')
)See also
Other model functions: get_config() get_layer() get_state_tree() keras_model_sequential() pop_layer() set_state_tree() summary.keras.src.models.model.Model()
Other model creation: keras_input() keras_model_sequential()