Global average pooling operation for temporal data.
Source:R/layers-pooling.R
layer_global_average_pooling_1d.RdGlobal average pooling operation for temporal data.
Arguments
- object
Object to compose the layer with. A tensor, array, or sequential model.
- data_format
string, either
"channels_last"or"channels_first". The ordering of the dimensions in the inputs."channels_last"corresponds to inputs with shape(batch, steps, features)while"channels_first"corresponds to inputs with shape(batch, features, steps). It defaults to theimage_data_formatvalue found in your Keras config file at~/.keras/keras.json. If you never set it, then it will be"channels_last".- keepdims
A boolean, whether to keep the temporal dimension or not. If
keepdimsisFALSE(default), the rank of the tensor is reduced for spatial dimensions. IfkeepdimsisTRUE, the temporal dimension are retained with length 1. The behavior is the same as fortf$reduce_mean()orop_mean().- ...
For forward/backward compatability.
Value
The return value depends on the value provided for the first argument.
If object is:
a
keras_model_sequential(), then the layer is added to the sequential model (which is modified in place). To enable piping, the sequential model is also returned, invisibly.a
keras_input(), then the output tensor from callinglayer(input)is returned.NULLor missing, then aLayerinstance is returned.
Call Arguments
inputs: A 3D tensor.mask: Binary tensor of shape(batch_size, steps)indicating whether a given step should be masked (excluded from the average).
Input Shape
If
data_format='channels_last': 3D tensor with shape:(batch_size, steps, features)If
data_format='channels_first': 3D tensor with shape:(batch_size, features, steps)
Output Shape
If
keepdims=FALSE: 2D tensor with shape(batch_size, features).If
keepdims=TRUE:If
data_format="channels_last": 3D tensor with shape(batch_size, 1, features)If
data_format="channels_first": 3D tensor with shape(batch_size, features, 1)
Examples
x <- random_uniform(c(2, 3, 4))
y <- x |> layer_global_average_pooling_1d()
shape(y)See also
Other pooling layers: layer_average_pooling_1d() layer_average_pooling_2d() layer_average_pooling_3d() layer_global_average_pooling_2d() layer_global_average_pooling_3d() layer_global_max_pooling_1d() layer_global_max_pooling_2d() layer_global_max_pooling_3d() layer_max_pooling_1d() layer_max_pooling_2d() layer_max_pooling_3d()
Other layers: Layer() layer_activation() layer_activation_elu() layer_activation_leaky_relu() layer_activation_parametric_relu() layer_activation_relu() layer_activation_softmax() layer_activity_regularization() layer_add() layer_additive_attention() layer_alpha_dropout() layer_attention() layer_aug_mix() layer_auto_contrast() layer_average() layer_average_pooling_1d() layer_average_pooling_2d() layer_average_pooling_3d() layer_batch_normalization() layer_bidirectional() layer_category_encoding() layer_center_crop() layer_concatenate() layer_conv_1d() layer_conv_1d_transpose() layer_conv_2d() layer_conv_2d_transpose() layer_conv_3d() layer_conv_3d_transpose() layer_conv_lstm_1d() layer_conv_lstm_2d() layer_conv_lstm_3d() layer_cropping_1d() layer_cropping_2d() layer_cropping_3d() layer_cut_mix() layer_dense() layer_depthwise_conv_1d() layer_depthwise_conv_2d() layer_discretization() layer_dot() layer_dropout() layer_einsum_dense() layer_embedding() layer_equalization() layer_feature_space() layer_flatten() layer_flax_module_wrapper() layer_gaussian_dropout() layer_gaussian_noise() layer_global_average_pooling_2d() layer_global_average_pooling_3d() layer_global_max_pooling_1d() layer_global_max_pooling_2d() layer_global_max_pooling_3d() layer_group_normalization() layer_group_query_attention() layer_gru() layer_hashed_crossing() layer_hashing() layer_identity() layer_integer_lookup() layer_jax_model_wrapper() layer_lambda() layer_layer_normalization() layer_lstm() layer_masking() layer_max_num_bounding_boxes() layer_max_pooling_1d() layer_max_pooling_2d() layer_max_pooling_3d() layer_maximum() layer_mel_spectrogram() layer_minimum() layer_mix_up() layer_multi_head_attention() layer_multiply() layer_normalization() layer_permute() layer_rand_augment() layer_random_brightness() layer_random_color_degeneration() layer_random_color_jitter() layer_random_contrast() layer_random_crop() layer_random_erasing() layer_random_flip() layer_random_gaussian_blur() layer_random_grayscale() layer_random_hue() layer_random_invert() layer_random_perspective() layer_random_posterization() layer_random_rotation() layer_random_saturation() layer_random_sharpness() layer_random_shear() layer_random_translation() layer_random_zoom() layer_repeat_vector() layer_rescaling() layer_reshape() layer_resizing() layer_rms_normalization() layer_rnn() layer_separable_conv_1d() layer_separable_conv_2d() layer_simple_rnn() layer_solarization() layer_spatial_dropout_1d() layer_spatial_dropout_2d() layer_spatial_dropout_3d() layer_spectral_normalization() layer_stft_spectrogram() layer_string_lookup() layer_subtract() layer_text_vectorization() layer_tfsm() layer_time_distributed() layer_torch_module_wrapper() layer_unit_normalization() layer_upsampling_1d() layer_upsampling_2d() layer_upsampling_3d() layer_zero_padding_1d() layer_zero_padding_2d() layer_zero_padding_3d() rnn_cell_gru() rnn_cell_lstm() rnn_cell_simple() rnn_cells_stack()