Average pooling operation for 3D data (spatial or spatio-temporal).
Source:R/layers-pooling.R
layer_average_pooling_3d.RdDownsamples the input along its spatial dimensions (depth, height, and
width) by taking the average value over an input window (of size defined by
pool_size) for each channel of the input. The window is shifted by
strides along each dimension.
Usage
layer_average_pooling_3d(
object,
pool_size,
strides = NULL,
padding = "valid",
data_format = NULL,
name = NULL,
...
)Arguments
- object
Object to compose the layer with. A tensor, array, or sequential model.
- pool_size
int or list of 3 integers, factors by which to downscale (dim1, dim2, dim3). If only one integer is specified, the same window length will be used for all dimensions.
- strides
int or list of 3 integers, or
NULL. Strides values. IfNULL, it will default topool_size. If only one int is specified, the same stride size will be used for all dimensions.- padding
string, either
"valid"or"same"(case-insensitive)."valid"means no padding."same"results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input.- data_format
string, either
"channels_last"or"channels_first". The ordering of the dimensions in the inputs."channels_last"corresponds to inputs with shape(batch, spatial_dim1, spatial_dim2, spatial_dim3, channels)while"channels_first"corresponds to inputs with shape(batch, channels, spatial_dim1, spatial_dim2, spatial_dim3). It defaults to theimage_data_formatvalue found in your Keras config file at~/.keras/keras.json. If you never set it, then it will be"channels_last".- name
String, name for the object
- ...
For forward/backward compatability.
Value
The return value depends on the value provided for the first argument.
If object is:
a
keras_model_sequential(), then the layer is added to the sequential model (which is modified in place). To enable piping, the sequential model is also returned, invisibly.a
keras_input(), then the output tensor from callinglayer(input)is returned.NULLor missing, then aLayerinstance is returned.
Input Shape
If
data_format="channels_last": 5D tensor with shape:(batch_size, spatial_dim1, spatial_dim2, spatial_dim3, channels)If
data_format="channels_first": 5D tensor with shape:(batch_size, channels, spatial_dim1, spatial_dim2, spatial_dim3)
Output Shape
If
data_format="channels_last": 5D tensor with shape:(batch_size, pooled_dim1, pooled_dim2, pooled_dim3, channels)If
data_format="channels_first": 5D tensor with shape:(batch_size, channels, pooled_dim1, pooled_dim2, pooled_dim3)
Examples
depth <- height <- width <- 30
channels <- 3
inputs <- layer_input(shape = c(depth, height, width, channels))
outputs <- inputs |> layer_average_pooling_3d(pool_size = 3)
outputs # Shape: (batch_size, 10, 10, 10, 3)See also
Other pooling layers: layer_average_pooling_1d() layer_average_pooling_2d() layer_global_average_pooling_1d() layer_global_average_pooling_2d() layer_global_average_pooling_3d() layer_global_max_pooling_1d() layer_global_max_pooling_2d() layer_global_max_pooling_3d() layer_max_pooling_1d() layer_max_pooling_2d() layer_max_pooling_3d()
Other layers: Layer() layer_activation() layer_activation_elu() layer_activation_leaky_relu() layer_activation_parametric_relu() layer_activation_relu() layer_activation_softmax() layer_activity_regularization() layer_add() layer_additive_attention() layer_alpha_dropout() layer_attention() layer_aug_mix() layer_auto_contrast() layer_average() layer_average_pooling_1d() layer_average_pooling_2d() layer_batch_normalization() layer_bidirectional() layer_category_encoding() layer_center_crop() layer_concatenate() layer_conv_1d() layer_conv_1d_transpose() layer_conv_2d() layer_conv_2d_transpose() layer_conv_3d() layer_conv_3d_transpose() layer_conv_lstm_1d() layer_conv_lstm_2d() layer_conv_lstm_3d() layer_cropping_1d() layer_cropping_2d() layer_cropping_3d() layer_cut_mix() layer_dense() layer_depthwise_conv_1d() layer_depthwise_conv_2d() layer_discretization() layer_dot() layer_dropout() layer_einsum_dense() layer_embedding() layer_equalization() layer_feature_space() layer_flatten() layer_flax_module_wrapper() layer_gaussian_dropout() layer_gaussian_noise() layer_global_average_pooling_1d() layer_global_average_pooling_2d() layer_global_average_pooling_3d() layer_global_max_pooling_1d() layer_global_max_pooling_2d() layer_global_max_pooling_3d() layer_group_normalization() layer_group_query_attention() layer_gru() layer_hashed_crossing() layer_hashing() layer_identity() layer_integer_lookup() layer_jax_model_wrapper() layer_lambda() layer_layer_normalization() layer_lstm() layer_masking() layer_max_num_bounding_boxes() layer_max_pooling_1d() layer_max_pooling_2d() layer_max_pooling_3d() layer_maximum() layer_mel_spectrogram() layer_minimum() layer_mix_up() layer_multi_head_attention() layer_multiply() layer_normalization() layer_permute() layer_rand_augment() layer_random_brightness() layer_random_color_degeneration() layer_random_color_jitter() layer_random_contrast() layer_random_crop() layer_random_erasing() layer_random_flip() layer_random_gaussian_blur() layer_random_grayscale() layer_random_hue() layer_random_invert() layer_random_perspective() layer_random_posterization() layer_random_rotation() layer_random_saturation() layer_random_sharpness() layer_random_shear() layer_random_translation() layer_random_zoom() layer_repeat_vector() layer_rescaling() layer_reshape() layer_resizing() layer_rms_normalization() layer_rnn() layer_separable_conv_1d() layer_separable_conv_2d() layer_simple_rnn() layer_solarization() layer_spatial_dropout_1d() layer_spatial_dropout_2d() layer_spatial_dropout_3d() layer_spectral_normalization() layer_stft_spectrogram() layer_string_lookup() layer_subtract() layer_text_vectorization() layer_tfsm() layer_time_distributed() layer_torch_module_wrapper() layer_unit_normalization() layer_upsampling_1d() layer_upsampling_2d() layer_upsampling_3d() layer_zero_padding_1d() layer_zero_padding_2d() layer_zero_padding_3d() rnn_cell_gru() rnn_cell_lstm() rnn_cell_simple() rnn_cells_stack()