A preprocessing layer which randomly translates images during training.
Source:R/layers-preprocessing.R
layer_random_translation.RdThis layer will apply random translations to each image during training,
filling empty space according to fill_mode.
Input pixel values can be of any range (e.g. [0., 1.) or [0, 255]) and
of integer or floating point dtype. By default, the layer will output
floats.
Usage
layer_random_translation(
object,
height_factor,
width_factor,
fill_mode = "reflect",
interpolation = "bilinear",
seed = NULL,
fill_value = 0,
data_format = NULL,
...
)Arguments
- object
Object to compose the layer with. A tensor, array, or sequential model.
- height_factor
a float represented as fraction of value, or a tuple of size 2 representing lower and upper bound for shifting vertically. A negative value means shifting image up, while a positive value means shifting image down. When represented as a single positive float, this value is used for both the upper and lower bound. For instance,
height_factor=(-0.2, 0.3)results in an output shifted by a random amount in the range[-20%, +30%].height_factor=0.2results in an output height shifted by a random amount in the range[-20%, +20%].- width_factor
a float represented as fraction of value, or a tuple of size 2 representing lower and upper bound for shifting horizontally. A negative value means shifting image left, while a positive value means shifting image right. When represented as a single positive float, this value is used for both the upper and lower bound. For instance,
width_factor=(-0.2, 0.3)results in an output shifted left by 20%, and shifted right by 30%.width_factor=0.2results in an output height shifted left or right by 20%.- fill_mode
Points outside the boundaries of the input are filled according to the given mode. Available methods are
"constant","nearest","wrap"and"reflect". Defaults to"reflect"."reflect":(d c b a | a b c d | d c b a)The input is extended by reflecting about the edge of the last pixel."constant":(k k k k | a b c d | k k k k)The input is extended by filling all values beyond the edge with the same constant value k specified byfill_value."wrap":(a b c d | a b c d | a b c d)The input is extended by wrapping around to the opposite edge."nearest":(a a a a | a b c d | d d d d)The input is extended by the nearest pixel. Note that when using torch backend,"reflect"is redirected to"mirror"(c d c b | a b c d | c b a b)because torch does not support"reflect". Note that torch backend does not support"wrap".
- interpolation
Interpolation mode. Supported values:
"nearest","bilinear".- seed
Integer. Used to create a random seed.
- fill_value
a float represents the value to be filled outside the boundaries when
fill_mode="constant".- data_format
string, either
"channels_last"or"channels_first". The ordering of the dimensions in the inputs."channels_last"corresponds to inputs with shape(batch, height, width, channels)while"channels_first"corresponds to inputs with shape(batch, channels, height, width). It defaults to theimage_data_formatvalue found in your Keras config file at~/.keras/keras.json. If you never set it, then it will be"channels_last".- ...
Base layer keyword arguments, such as
nameanddtype.
Value
The return value depends on the value provided for the first argument.
If object is:
a
keras_model_sequential(), then the layer is added to the sequential model (which is modified in place). To enable piping, the sequential model is also returned, invisibly.a
keras_input(), then the output tensor from callinglayer(input)is returned.NULLor missing, then aLayerinstance is returned.
Input Shape
3D (unbatched) or 4D (batched) tensor with shape:
(..., height, width, channels), in "channels_last" format,
or (..., channels, height, width), in "channels_first" format.
Output Shape
3D (unbatched) or 4D (batched) tensor with shape:
(..., target_height, target_width, channels),
or (..., channels, target_height, target_width),
in "channels_first" format.
Note: This layer is safe to use inside a tf.data pipeline
(independently of which backend you're using).
See also
Other image augmentation layers: layer_random_brightness() layer_random_contrast() layer_random_crop() layer_random_flip() layer_random_rotation() layer_random_zoom()
Other preprocessing layers: layer_aug_mix() layer_auto_contrast() layer_category_encoding() layer_center_crop() layer_cut_mix() layer_discretization() layer_equalization() layer_feature_space() layer_hashed_crossing() layer_hashing() layer_integer_lookup() layer_max_num_bounding_boxes() layer_mel_spectrogram() layer_mix_up() layer_normalization() layer_rand_augment() layer_random_brightness() layer_random_color_degeneration() layer_random_color_jitter() layer_random_contrast() layer_random_crop() layer_random_erasing() layer_random_flip() layer_random_gaussian_blur() layer_random_grayscale() layer_random_hue() layer_random_invert() layer_random_perspective() layer_random_posterization() layer_random_rotation() layer_random_saturation() layer_random_sharpness() layer_random_shear() layer_random_zoom() layer_rescaling() layer_resizing() layer_solarization() layer_stft_spectrogram() layer_string_lookup() layer_text_vectorization()
Other layers: Layer() layer_activation() layer_activation_elu() layer_activation_leaky_relu() layer_activation_parametric_relu() layer_activation_relu() layer_activation_softmax() layer_activity_regularization() layer_add() layer_additive_attention() layer_alpha_dropout() layer_attention() layer_aug_mix() layer_auto_contrast() layer_average() layer_average_pooling_1d() layer_average_pooling_2d() layer_average_pooling_3d() layer_batch_normalization() layer_bidirectional() layer_category_encoding() layer_center_crop() layer_concatenate() layer_conv_1d() layer_conv_1d_transpose() layer_conv_2d() layer_conv_2d_transpose() layer_conv_3d() layer_conv_3d_transpose() layer_conv_lstm_1d() layer_conv_lstm_2d() layer_conv_lstm_3d() layer_cropping_1d() layer_cropping_2d() layer_cropping_3d() layer_cut_mix() layer_dense() layer_depthwise_conv_1d() layer_depthwise_conv_2d() layer_discretization() layer_dot() layer_dropout() layer_einsum_dense() layer_embedding() layer_equalization() layer_feature_space() layer_flatten() layer_flax_module_wrapper() layer_gaussian_dropout() layer_gaussian_noise() layer_global_average_pooling_1d() layer_global_average_pooling_2d() layer_global_average_pooling_3d() layer_global_max_pooling_1d() layer_global_max_pooling_2d() layer_global_max_pooling_3d() layer_group_normalization() layer_group_query_attention() layer_gru() layer_hashed_crossing() layer_hashing() layer_identity() layer_integer_lookup() layer_jax_model_wrapper() layer_lambda() layer_layer_normalization() layer_lstm() layer_masking() layer_max_num_bounding_boxes() layer_max_pooling_1d() layer_max_pooling_2d() layer_max_pooling_3d() layer_maximum() layer_mel_spectrogram() layer_minimum() layer_mix_up() layer_multi_head_attention() layer_multiply() layer_normalization() layer_permute() layer_rand_augment() layer_random_brightness() layer_random_color_degeneration() layer_random_color_jitter() layer_random_contrast() layer_random_crop() layer_random_erasing() layer_random_flip() layer_random_gaussian_blur() layer_random_grayscale() layer_random_hue() layer_random_invert() layer_random_perspective() layer_random_posterization() layer_random_rotation() layer_random_saturation() layer_random_sharpness() layer_random_shear() layer_random_zoom() layer_repeat_vector() layer_rescaling() layer_reshape() layer_resizing() layer_rms_normalization() layer_rnn() layer_separable_conv_1d() layer_separable_conv_2d() layer_simple_rnn() layer_solarization() layer_spatial_dropout_1d() layer_spatial_dropout_2d() layer_spatial_dropout_3d() layer_spectral_normalization() layer_stft_spectrogram() layer_string_lookup() layer_subtract() layer_text_vectorization() layer_tfsm() layer_time_distributed() layer_torch_module_wrapper() layer_unit_normalization() layer_upsampling_1d() layer_upsampling_2d() layer_upsampling_3d() layer_zero_padding_1d() layer_zero_padding_2d() layer_zero_padding_3d() rnn_cell_gru() rnn_cell_lstm() rnn_cell_simple() rnn_cells_stack()