Similar to an LSTM layer, but the input transformations and recurrent transformations are both convolutional.
Usage
layer_conv_lstm_3d(
  object,
  filters,
  kernel_size,
  strides = 1L,
  padding = "valid",
  data_format = NULL,
  dilation_rate = 1L,
  activation = "tanh",
  recurrent_activation = "sigmoid",
  use_bias = TRUE,
  kernel_initializer = "glorot_uniform",
  recurrent_initializer = "orthogonal",
  bias_initializer = "zeros",
  unit_forget_bias = TRUE,
  kernel_regularizer = NULL,
  recurrent_regularizer = NULL,
  bias_regularizer = NULL,
  activity_regularizer = NULL,
  kernel_constraint = NULL,
  recurrent_constraint = NULL,
  bias_constraint = NULL,
  dropout = 0,
  recurrent_dropout = 0,
  seed = NULL,
  return_sequences = FALSE,
  return_state = FALSE,
  go_backwards = FALSE,
  stateful = FALSE,
  ...,
  unroll = NULL
)Arguments
- object
- Object to compose the layer with. A tensor, array, or sequential model. 
- filters
- int, the dimension of the output space (the number of filters in the convolution). 
- kernel_size
- int or tuple/list of 3 integers, specifying the size of the convolution window. 
- strides
- int or tuple/list of 3 integers, specifying the stride length of the convolution. - strides > 1is incompatible with- dilation_rate > 1.
- padding
- string, - "valid"or- "same"(case-insensitive).- "valid"means no padding.- "same"results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input.
- data_format
- string, either - "channels_last"or- "channels_first". The ordering of the dimensions in the inputs.- "channels_last"corresponds to inputs with shape- (batch, steps, features)while- "channels_first"corresponds to inputs with shape- (batch, features, steps). It defaults to the- image_data_formatvalue found in your Keras config file at- ~/.keras/keras.json. If you never set it, then it will be- "channels_last".
- dilation_rate
- int or tuple/list of 3 integers, specifying the dilation rate to use for dilated convolution. 
- activation
- Activation function to use. By default hyperbolic tangent activation function is applied ( - tanh(x)).
- recurrent_activation
- Activation function to use for the recurrent step. 
- use_bias
- Boolean, whether the layer uses a bias vector. 
- kernel_initializer
- Initializer for the - kernelweights matrix, used for the linear transformation of the inputs.
- recurrent_initializer
- Initializer for the - recurrent_kernelweights matrix, used for the linear transformation of the recurrent state.
- bias_initializer
- Initializer for the bias vector. 
- unit_forget_bias
- Boolean. If - TRUE, add 1 to the bias of the forget gate at initialization. Use in combination with- bias_initializer="zeros". This is recommended in Jozefowicz et al., 2015
- kernel_regularizer
- Regularizer function applied to the - kernelweights matrix.
- recurrent_regularizer
- Regularizer function applied to the - recurrent_kernelweights matrix.
- bias_regularizer
- Regularizer function applied to the bias vector. 
- activity_regularizer
- Regularizer function applied to. 
- kernel_constraint
- Constraint function applied to the - kernelweights matrix.
- recurrent_constraint
- Constraint function applied to the - recurrent_kernelweights matrix.
- bias_constraint
- Constraint function applied to the bias vector. 
- dropout
- Float between 0 and 1. Fraction of the units to drop for the linear transformation of the inputs. 
- recurrent_dropout
- Float between 0 and 1. Fraction of the units to drop for the linear transformation of the recurrent state. 
- seed
- Random seed for dropout. 
- return_sequences
- Boolean. Whether to return the last output in the output sequence, or the full sequence. Default: - FALSE.
- return_state
- Boolean. Whether to return the last state in addition to the output. Default: - FALSE.
- go_backwards
- Boolean (default: - FALSE). If- TRUE, process the input sequence backwards and return the reversed sequence.
- stateful
- Boolean (default - FALSE). If- TRUE, the last state for each sample at index i in a batch will be used as initial state for the sample of index i in the following batch.
- ...
- For forward/backward compatability. 
- unroll
- Boolean (default: - FALSE). If- TRUE, the network will be unrolled, else a symbolic loop will be used. Unrolling can speed-up a RNN, although it tends to be more memory-intensive. Unrolling is only suitable for short sequences.
Value
The return value depends on the value provided for the first argument.
If  object is:
- a - keras_model_sequential(), then the layer is added to the sequential model (which is modified in place). To enable piping, the sequential model is also returned, invisibly.
- a - keras_input(), then the output tensor from calling- layer(input)is returned.
- NULLor missing, then a- Layerinstance is returned.
Call Arguments
- inputs: A 6D tensor.
- mask: Binary tensor of shape- (samples, timesteps)indicating whether a given timestep should be masked.
- training: Python boolean indicating whether the layer should behave in training mode or in inference mode. This is only relevant if- dropoutor- recurrent_dropoutare set.
- initial_state: List of initial state tensors to be passed to the first call of the cell.
Input Shape
- If - data_format='channels_first': 5D tensor with shape:- (samples, time, channels, *spatial_dims)
- If - data_format='channels_last': 5D tensor with shape:- (samples, time, *spatial_dims, channels)
Output Shape
- If - return_state: a list of tensors. The first tensor is the output. The remaining tensors are the last states, each 4D tensor with shape:- (samples, filters, *spatial_dims)if- data_format='channels_first'or shape:- (samples, *spatial_dims, filters)if- data_format='channels_last'.
- If - return_sequences: 5D tensor with shape:- (samples, timesteps, filters, *spatial_dims)if data_format='channels_first' or shape:- (samples, timesteps, *spatial_dims, filters)if- data_format='channels_last'.
- Else, 4D tensor with shape: - (samples, filters, *spatial_dims)if- data_format='channels_first'or shape:- (samples, *spatial_dims, filters)if- data_format='channels_last'.
References
- Shi et al., 2015 (the current implementation does not include the feedback loop on the cells output). 
See also
Other rnn layers: layer_bidirectional() layer_conv_lstm_1d() layer_conv_lstm_2d() layer_gru() layer_lstm() layer_rnn() layer_simple_rnn() layer_time_distributed() rnn_cell_gru() rnn_cell_lstm() rnn_cell_simple() rnn_cells_stack() 
Other layers: Layer() layer_activation() layer_activation_elu() layer_activation_leaky_relu() layer_activation_parametric_relu() layer_activation_relu() layer_activation_softmax() layer_activity_regularization() layer_add() layer_additive_attention() layer_alpha_dropout() layer_attention() layer_aug_mix() layer_auto_contrast() layer_average() layer_average_pooling_1d() layer_average_pooling_2d() layer_average_pooling_3d() layer_batch_normalization() layer_bidirectional() layer_category_encoding() layer_center_crop() layer_concatenate() layer_conv_1d() layer_conv_1d_transpose() layer_conv_2d() layer_conv_2d_transpose() layer_conv_3d() layer_conv_3d_transpose() layer_conv_lstm_1d() layer_conv_lstm_2d() layer_cropping_1d() layer_cropping_2d() layer_cropping_3d() layer_cut_mix() layer_dense() layer_depthwise_conv_1d() layer_depthwise_conv_2d() layer_discretization() layer_dot() layer_dropout() layer_einsum_dense() layer_embedding() layer_equalization() layer_feature_space() layer_flatten() layer_flax_module_wrapper() layer_gaussian_dropout() layer_gaussian_noise() layer_global_average_pooling_1d() layer_global_average_pooling_2d() layer_global_average_pooling_3d() layer_global_max_pooling_1d() layer_global_max_pooling_2d() layer_global_max_pooling_3d() layer_group_normalization() layer_group_query_attention() layer_gru() layer_hashed_crossing() layer_hashing() layer_identity() layer_integer_lookup() layer_jax_model_wrapper() layer_lambda() layer_layer_normalization() layer_lstm() layer_masking() layer_max_num_bounding_boxes() layer_max_pooling_1d() layer_max_pooling_2d() layer_max_pooling_3d() layer_maximum() layer_mel_spectrogram() layer_minimum() layer_mix_up() layer_multi_head_attention() layer_multiply() layer_normalization() layer_permute() layer_rand_augment() layer_random_brightness() layer_random_color_degeneration() layer_random_color_jitter() layer_random_contrast() layer_random_crop() layer_random_erasing() layer_random_flip() layer_random_gaussian_blur() layer_random_grayscale() layer_random_hue() layer_random_invert() layer_random_perspective() layer_random_posterization() layer_random_rotation() layer_random_saturation() layer_random_sharpness() layer_random_shear() layer_random_translation() layer_random_zoom() layer_repeat_vector() layer_rescaling() layer_reshape() layer_resizing() layer_rms_normalization() layer_rnn() layer_separable_conv_1d() layer_separable_conv_2d() layer_simple_rnn() layer_solarization() layer_spatial_dropout_1d() layer_spatial_dropout_2d() layer_spatial_dropout_3d() layer_spectral_normalization() layer_stft_spectrogram() layer_string_lookup() layer_subtract() layer_text_vectorization() layer_tfsm() layer_time_distributed() layer_torch_module_wrapper() layer_unit_normalization() layer_upsampling_1d() layer_upsampling_2d() layer_upsampling_3d() layer_zero_padding_1d() layer_zero_padding_2d() layer_zero_padding_3d() rnn_cell_gru() rnn_cell_lstm() rnn_cell_simple() rnn_cells_stack()