Generates a tf.data.Dataset from audio files in a directory.
Source: R/dataset-utils.R
audio_dataset_from_directory.RdIf your directory structure is:
main_directory/
...class_a/
......a_audio_1.wav
......a_audio_2.wav
...class_b/
......b_audio_1.wav
......b_audio_2.wavThen calling audio_dataset_from_directory(main_directory, labels = 'inferred')
will return a tf.data.Dataset that yields batches of audio files from
the subdirectories class_a and class_b, together with labels
0 and 1 (0 corresponding to class_a and 1 corresponding to class_b).
Only .wav files are supported at this time.
Usage
audio_dataset_from_directory(
directory,
labels = "inferred",
label_mode = "int",
class_names = NULL,
batch_size = 32L,
sampling_rate = NULL,
output_sequence_length = NULL,
ragged = FALSE,
shuffle = TRUE,
seed = NULL,
validation_split = NULL,
subset = NULL,
follow_links = FALSE,
verbose = TRUE
)Arguments
- directory
Directory where the data is located. If
labelsis"inferred", it should contain subdirectories, each containing audio files for a class. Otherwise, the directory structure is ignored.- labels
Either "inferred" (labels are generated from the directory structure),
NULL(no labels), or a list/tuple of integer labels of the same size as the number of audio files found in the directory. Labels should be sorted according to the alphanumeric order of the audio file paths (obtained viaos.walk(directory)in Python).- label_mode
String describing the encoding of
labels. Options are:"int": means that the labels are encoded as integers (e.g. forsparse_categorical_crossentropyloss)."categorical"means that the labels are encoded as a categorical vector (e.g. forcategorical_crossentropyloss)"binary"means that the labels (there can be only 2) are encoded asfloat32scalars with values 0 or 1 (e.g. forbinary_crossentropy).NULL(no labels).
- class_names
Only valid if "labels" is
"inferred". This is the explicit list of class names (must match names of subdirectories). Used to control the order of the classes (otherwise alphanumerical order is used).- batch_size
Size of the batches of data. Default: 32. If
NULL, the data will not be batched (the dataset will yield individual samples).- sampling_rate
Audio sampling rate (in samples per second).
- output_sequence_length
Maximum length of an audio sequence. Audio files longer than this will be truncated to
output_sequence_length. If set toNULL, then all sequences in the same batch will be padded to the length of the longest sequence in the batch.- ragged
Whether to return a Ragged dataset (where each sequence has its own length). Defaults to
FALSE.- shuffle
Whether to shuffle the data. Defaults to
TRUE. If set toFALSE, sorts the data in alphanumeric order.- seed
Optional random seed for shuffling and transformations.
- validation_split
Optional float between 0 and 1, fraction of data to reserve for validation.
- subset
Subset of the data to return. One of
"training","validation"or"both". Only used ifvalidation_splitis set.- follow_links
Whether to visits subdirectories pointed to by symlinks. Defaults to
FALSE.- verbose
Whether to display number information on classes and number of files found. Defaults to
TRUE.
Value
A tf.data.Dataset object.
If
label_modeisNULL, it yieldsstringtensors of shape(batch_size,), containing the contents of a batch of audio files.Otherwise, it yields a tuple
(audio, labels), whereaudiohas shape(batch_size, sequence_length, num_channels)andlabelsfollows the format described below.
Rules regarding labels format:
if
label_modeisint, the labels are anint32tensor of shape(batch_size,).if
label_modeisbinary, the labels are afloat32tensor of 1s and 0s of shape(batch_size, 1).if
label_modeiscategorical, the labels are afloat32tensor of shape(batch_size, num_classes), representing a one-hot encoding of the class index.
See also
Other dataset utils: image_dataset_from_directory() split_dataset() text_dataset_from_directory() timeseries_dataset_from_array()
Other utils: clear_session() config_disable_interactive_logging() config_disable_traceback_filtering() config_enable_interactive_logging() config_enable_traceback_filtering() config_is_interactive_logging_enabled() config_is_traceback_filtering_enabled() get_file() get_source_inputs() image_array_save() image_dataset_from_directory() image_from_array() image_load() image_smart_resize() image_to_array() layer_feature_space() normalize() pad_sequences() set_random_seed() split_dataset() text_dataset_from_directory() timeseries_dataset_from_array() to_categorical() zip_lists()