Formula:
loss <- square(maximum(1 - y_true * y_pred, 0))y_true values are expected to be -1 or 1. If binary (0 or 1) labels are
provided we will convert them to -1 or 1.
Usage
loss_squared_hinge(
y_true,
y_pred,
...,
reduction = "sum_over_batch_size",
name = "squared_hinge",
dtype = NULL
)Arguments
- y_true
The ground truth values.
y_truevalues are expected to be -1 or 1. If binary (0 or 1) labels are provided we will convert them to -1 or 1 with shape =[batch_size, d0, .. dN].- y_pred
The predicted values with shape =
[batch_size, d0, .. dN].- ...
For forward/backward compatability.
- reduction
Type of reduction to apply to the loss. In almost all cases this should be
"sum_over_batch_size". Supported options are"sum","sum_over_batch_size","mean","mean_with_sample_weight"orNULL."sum"sums the loss,"sum_over_batch_size"and"mean"sum the loss and divide by the sample size, and"mean_with_sample_weight"sums the loss and divides by the sum of the sample weights."none"andNULLperform no aggregation. Defaults to"sum_over_batch_size".- name
Optional name for the loss instance.
- dtype
The dtype of the loss's computations. Defaults to
NULL, which means usingconfig_floatx().config_floatx()is a"float32"unless set to different value (viaconfig_set_floatx()). If akeras$DTypePolicyis provided, then thecompute_dtypewill be utilized.
Examples
y_true <- array(sample(c(-1,1), 6, replace = TRUE), dim = c(2, 3))
y_pred <- random_uniform(c(2, 3))
loss <- loss_squared_hinge(y_true, y_pred)See also
Other losses: Loss() loss_binary_crossentropy() loss_binary_focal_crossentropy() loss_categorical_crossentropy() loss_categorical_focal_crossentropy() loss_categorical_hinge() loss_circle() loss_cosine_similarity() loss_ctc() loss_dice() loss_hinge() loss_huber() loss_kl_divergence() loss_log_cosh() loss_mean_absolute_error() loss_mean_absolute_percentage_error() loss_mean_squared_error() loss_mean_squared_logarithmic_error() loss_poisson() loss_sparse_categorical_crossentropy() loss_tversky() metric_binary_crossentropy() metric_binary_focal_crossentropy() metric_categorical_crossentropy() metric_categorical_focal_crossentropy() metric_categorical_hinge() metric_hinge() metric_huber() metric_kl_divergence() metric_log_cosh() metric_mean_absolute_error() metric_mean_absolute_percentage_error() metric_mean_squared_error() metric_mean_squared_logarithmic_error() metric_poisson() metric_sparse_categorical_crossentropy() metric_squared_hinge()