Computes the binary focal crossentropy loss.
Source:R/metrics.R
metric_binary_focal_crossentropy.RdAccording to Lin et al., 2018, it helps to apply a focal factor to down-weight easy examples and focus more on hard examples. By default, the focal tensor is computed as follows:
focal_factor = (1 - output)^gamma for class 1
focal_factor = output^gamma for class 0
where gamma is a focusing parameter. When gamma = 0, there is no focal
effect on the binary crossentropy loss.
If apply_class_balancing == TRUE, this function also takes into account a
weight balancing factor for the binary classes 0 and 1 as follows:
weight = alpha for class 1 (target == 1)
weight = 1 - alpha for class 0
where alpha is a float in the range of [0, 1].
Usage
metric_binary_focal_crossentropy(
y_true,
y_pred,
apply_class_balancing = FALSE,
alpha = 0.25,
gamma = 2,
from_logits = FALSE,
label_smoothing = 0,
axis = -1L
)Arguments
- y_true
Ground truth values, of shape
(batch_size, d0, .. dN).- y_pred
The predicted values, of shape
(batch_size, d0, .. dN).- apply_class_balancing
A bool, whether to apply weight balancing on the binary classes 0 and 1.
- alpha
A weight balancing factor for class 1, default is
0.25as mentioned in the reference. The weight for class 0 is1.0 - alpha.- gamma
A focusing parameter, default is
2.0as mentioned in the reference.- from_logits
Whether
y_predis expected to be a logits tensor. By default, we assume thaty_predencodes a probability distribution.- label_smoothing
Float in
[0, 1]. If >0then smooth the labels by squeezing them towards 0.5, that is, using1. - 0.5 * label_smoothingfor the target class and0.5 * label_smoothingfor the non-target class.- axis
The axis along which the mean is computed. Defaults to
-1.
Examples
See also
Other losses: Loss() loss_binary_crossentropy() loss_binary_focal_crossentropy() loss_categorical_crossentropy() loss_categorical_focal_crossentropy() loss_categorical_hinge() loss_circle() loss_cosine_similarity() loss_ctc() loss_dice() loss_hinge() loss_huber() loss_kl_divergence() loss_log_cosh() loss_mean_absolute_error() loss_mean_absolute_percentage_error() loss_mean_squared_error() loss_mean_squared_logarithmic_error() loss_poisson() loss_sparse_categorical_crossentropy() loss_squared_hinge() loss_tversky() metric_binary_crossentropy() metric_categorical_crossentropy() metric_categorical_focal_crossentropy() metric_categorical_hinge() metric_hinge() metric_huber() metric_kl_divergence() metric_log_cosh() metric_mean_absolute_error() metric_mean_absolute_percentage_error() metric_mean_squared_error() metric_mean_squared_logarithmic_error() metric_poisson() metric_sparse_categorical_crossentropy() metric_squared_hinge()
Other metrics: Metric() custom_metric() metric_auc() metric_binary_accuracy() metric_binary_crossentropy() metric_binary_iou() metric_categorical_accuracy() metric_categorical_crossentropy() metric_categorical_focal_crossentropy() metric_categorical_hinge() metric_concordance_correlation() metric_cosine_similarity() metric_f1_score() metric_false_negatives() metric_false_positives() metric_fbeta_score() metric_hinge() metric_huber() metric_iou() metric_kl_divergence() metric_log_cosh() metric_log_cosh_error() metric_mean() metric_mean_absolute_error() metric_mean_absolute_percentage_error() metric_mean_iou() metric_mean_squared_error() metric_mean_squared_logarithmic_error() metric_mean_wrapper() metric_one_hot_iou() metric_one_hot_mean_iou() metric_pearson_correlation() metric_poisson() metric_precision() metric_precision_at_recall() metric_r2_score() metric_recall() metric_recall_at_precision() metric_root_mean_squared_error() metric_sensitivity_at_specificity() metric_sparse_categorical_accuracy() metric_sparse_categorical_crossentropy() metric_sparse_top_k_categorical_accuracy() metric_specificity_at_sensitivity() metric_squared_hinge() metric_sum() metric_top_k_categorical_accuracy() metric_true_negatives() metric_true_positives()