Formula:
for (x in error) {
if (abs(x) <= delta){
loss <- c(loss, (0.5 * x^2))
} else if (abs(x) > delta) {
loss <- c(loss, (delta * abs(x) - 0.5 * delta^2))
}
}
loss <- mean(loss)See: Huber loss.
Usage
loss_huber(
y_true,
y_pred,
delta = 1,
...,
reduction = "sum_over_batch_size",
name = "huber_loss",
dtype = NULL
)Arguments
- y_true
tensor of true targets.
- y_pred
tensor of predicted targets.
- delta
A float, the point where the Huber loss function changes from a quadratic to linear. Defaults to
1.0.- ...
For forward/backward compatability.
- reduction
Type of reduction to apply to loss. Options are
"sum","sum_over_batch_size"orNULL. Defaults to"sum_over_batch_size".- name
Optional name for the instance.
- dtype
The dtype of the loss's computations. Defaults to
NULL, which means usingconfig_floatx().config_floatx()is a"float32"unless set to different value (viaconfig_set_floatx()). If akeras$DTypePolicyis provided, then thecompute_dtypewill be utilized.
See also
Other losses: Loss() loss_binary_crossentropy() loss_binary_focal_crossentropy() loss_categorical_crossentropy() loss_categorical_focal_crossentropy() loss_categorical_hinge() loss_circle() loss_cosine_similarity() loss_ctc() loss_dice() loss_hinge() loss_kl_divergence() loss_log_cosh() loss_mean_absolute_error() loss_mean_absolute_percentage_error() loss_mean_squared_error() loss_mean_squared_logarithmic_error() loss_poisson() loss_sparse_categorical_crossentropy() loss_squared_hinge() loss_tversky() metric_binary_crossentropy() metric_binary_focal_crossentropy() metric_categorical_crossentropy() metric_categorical_focal_crossentropy() metric_categorical_hinge() metric_hinge() metric_huber() metric_kl_divergence() metric_log_cosh() metric_mean_absolute_error() metric_mean_absolute_percentage_error() metric_mean_squared_error() metric_mean_squared_logarithmic_error() metric_poisson() metric_sparse_categorical_crossentropy() metric_squared_hinge()