If sample_weight is given, calculates the sum of the weights of
true negatives. This metric creates one local variable, accumulator
that is used to keep track of the number of true negatives.
If sample_weight is NULL, weights default to 1.
Use sample_weight of 0 to mask values.
Arguments
- ...
For forward/backward compatability.
- thresholds
(Optional) Defaults to
0.5. A float value, or a Python list of float threshold values in[0, 1]. A threshold is compared with prediction values to determine the truth value of predictions (i.e., above the threshold isTRUE, below isFALSE). If used with a loss function that setsfrom_logits=TRUE(i.e. no sigmoid applied to predictions),thresholdsshould be set to 0. One metric value is generated for each threshold value.- name
(Optional) string name of the metric instance.
- dtype
(Optional) data type of the metric result.
Value
a Metric instance is returned. The Metric instance can be passed
directly to compile(metrics = ), or used as a standalone object. See
?Metric for example usage.
Usage
Standalone usage:
m <- metric_true_negatives()
m$update_state(c(0, 1, 0, 0), c(1, 1, 0, 0))
m$result()See also
Other confusion metrics: metric_auc() metric_false_negatives() metric_false_positives() metric_precision() metric_precision_at_recall() metric_recall() metric_recall_at_precision() metric_sensitivity_at_specificity() metric_specificity_at_sensitivity() metric_true_positives()
Other metrics: Metric() custom_metric() metric_auc() metric_binary_accuracy() metric_binary_crossentropy() metric_binary_focal_crossentropy() metric_binary_iou() metric_categorical_accuracy() metric_categorical_crossentropy() metric_categorical_focal_crossentropy() metric_categorical_hinge() metric_concordance_correlation() metric_cosine_similarity() metric_f1_score() metric_false_negatives() metric_false_positives() metric_fbeta_score() metric_hinge() metric_huber() metric_iou() metric_kl_divergence() metric_log_cosh() metric_log_cosh_error() metric_mean() metric_mean_absolute_error() metric_mean_absolute_percentage_error() metric_mean_iou() metric_mean_squared_error() metric_mean_squared_logarithmic_error() metric_mean_wrapper() metric_one_hot_iou() metric_one_hot_mean_iou() metric_pearson_correlation() metric_poisson() metric_precision() metric_precision_at_recall() metric_r2_score() metric_recall() metric_recall_at_precision() metric_root_mean_squared_error() metric_sensitivity_at_specificity() metric_sparse_categorical_accuracy() metric_sparse_categorical_crossentropy() metric_sparse_top_k_categorical_accuracy() metric_specificity_at_sensitivity() metric_squared_hinge() metric_sum() metric_top_k_categorical_accuracy() metric_true_positives()