Calculates how often predictions match one-hot labels.
Source:R/metrics.R
metric_categorical_accuracy.RdYou can provide logits of classes as y_pred, since argmax of
logits and probabilities are same.
This metric creates two local variables, total and count that are used
to compute the frequency with which y_pred matches y_true. This
frequency is ultimately returned as categorical accuracy: an idempotent
operation that simply divides total by count.
y_pred and y_true should be passed in as vectors of probabilities,
rather than as labels. If necessary, use op_one_hot to expand y_true as
a vector.
If sample_weight is NULL, weights default to 1.
Use sample_weight of 0 to mask values.
Usage
metric_categorical_accuracy(
y_true,
y_pred,
...,
name = "categorical_accuracy",
dtype = NULL
)Arguments
- y_true
Tensor of true targets.
- y_pred
Tensor of predicted targets.
- ...
For forward/backward compatability.
- name
(Optional) string name of the metric instance.
- dtype
(Optional) data type of the metric result.
Value
If y_true and y_pred are missing, a Metric
instance is returned. The Metric instance that can be passed directly to
compile(metrics = ), or used as a standalone object. See ?Metric for
example usage. If y_true and y_pred are provided, then a tensor with
the computed value is returned.
Usage
Standalone usage:
m <- metric_categorical_accuracy()
m$update_state(rbind(c(0, 0, 1), c(0, 1, 0)), rbind(c(0.1, 0.9, 0.8),
c(0.05, 0.95, 0)))
m$result()m$reset_state()
m$update_state(rbind(c(0, 0, 1), c(0, 1, 0)), rbind(c(0.1, 0.9, 0.8),
c(0.05, 0.95, 0)),
sample_weight = c(0.7, 0.3))
m$result()# 0.3Usage with compile() API:
model %>% compile(optimizer = 'sgd',
loss = 'categorical_crossentropy',
metrics = list(metric_categorical_accuracy()))See also
Other accuracy metrics: metric_binary_accuracy() metric_sparse_categorical_accuracy() metric_sparse_top_k_categorical_accuracy() metric_top_k_categorical_accuracy()
Other metrics: Metric() custom_metric() metric_auc() metric_binary_accuracy() metric_binary_crossentropy() metric_binary_focal_crossentropy() metric_binary_iou() metric_categorical_crossentropy() metric_categorical_focal_crossentropy() metric_categorical_hinge() metric_concordance_correlation() metric_cosine_similarity() metric_f1_score() metric_false_negatives() metric_false_positives() metric_fbeta_score() metric_hinge() metric_huber() metric_iou() metric_kl_divergence() metric_log_cosh() metric_log_cosh_error() metric_mean() metric_mean_absolute_error() metric_mean_absolute_percentage_error() metric_mean_iou() metric_mean_squared_error() metric_mean_squared_logarithmic_error() metric_mean_wrapper() metric_one_hot_iou() metric_one_hot_mean_iou() metric_pearson_correlation() metric_poisson() metric_precision() metric_precision_at_recall() metric_r2_score() metric_recall() metric_recall_at_precision() metric_root_mean_squared_error() metric_sensitivity_at_specificity() metric_sparse_categorical_accuracy() metric_sparse_categorical_crossentropy() metric_sparse_top_k_categorical_accuracy() metric_specificity_at_sensitivity() metric_squared_hinge() metric_sum() metric_top_k_categorical_accuracy() metric_true_negatives() metric_true_positives()