If sample_weight is given, calculates the sum of the weights of
true positives. This metric creates one local variable, true_positives
that is used to keep track of the number of true positives.
If sample_weight is NULL, weights default to 1.
Use sample_weight of 0 to mask values.
Arguments
- ...
For forward/backward compatability.
- thresholds
(Optional) Defaults to
0.5. A float value, or a Python list of float threshold values in[0, 1]. A threshold is compared with prediction values to determine the truth value of predictions (i.e., above the threshold isTRUE, below isFALSE). If used with a loss function that setsfrom_logits=TRUE(i.e. no sigmoid applied to predictions),thresholdsshould be set to 0. One metric value is generated for each threshold value.- name
(Optional) string name of the metric instance.
- dtype
(Optional) data type of the metric result.
Value
a Metric instance is returned. The Metric instance can be passed
directly to compile(metrics = ), or used as a standalone object. See
?Metric for example usage.
Usage
Standalone usage:
m <- metric_true_positives()
m$update_state(c(0, 1, 1, 1), c(1, 0, 1, 1))
m$result()See also
Other confusion metrics: metric_auc() metric_false_negatives() metric_false_positives() metric_precision() metric_precision_at_recall() metric_recall() metric_recall_at_precision() metric_sensitivity_at_specificity() metric_specificity_at_sensitivity() metric_true_negatives()
Other metrics: Metric() custom_metric() metric_auc() metric_binary_accuracy() metric_binary_crossentropy() metric_binary_focal_crossentropy() metric_binary_iou() metric_categorical_accuracy() metric_categorical_crossentropy() metric_categorical_focal_crossentropy() metric_categorical_hinge() metric_concordance_correlation() metric_cosine_similarity() metric_f1_score() metric_false_negatives() metric_false_positives() metric_fbeta_score() metric_hinge() metric_huber() metric_iou() metric_kl_divergence() metric_log_cosh() metric_log_cosh_error() metric_mean() metric_mean_absolute_error() metric_mean_absolute_percentage_error() metric_mean_iou() metric_mean_squared_error() metric_mean_squared_logarithmic_error() metric_mean_wrapper() metric_one_hot_iou() metric_one_hot_mean_iou() metric_pearson_correlation() metric_poisson() metric_precision() metric_precision_at_recall() metric_r2_score() metric_recall() metric_recall_at_precision() metric_root_mean_squared_error() metric_sensitivity_at_specificity() metric_sparse_categorical_accuracy() metric_sparse_categorical_crossentropy() metric_sparse_top_k_categorical_accuracy() metric_specificity_at_sensitivity() metric_squared_hinge() metric_sum() metric_top_k_categorical_accuracy() metric_true_negatives()