You could use this class to quickly build a mean metric from a function. The
function needs to have the signature fn(y_true, y_pred) and return a
per-sample loss array. metric_mean_wrapper$result() will return
the average metric value across all samples seen so far.
For example:
mse <- function(y_true, y_pred) {
(y_true - y_pred)^2
}
mse_metric <- metric_mean_wrapper(fn = mse)
mse_metric$update_state(c(0, 1), c(1, 1))
mse_metric$result()Arguments
- ...
Keyword arguments to pass on to
fn.- fn
The metric function to wrap, with signature
fn(y_true, y_pred).- name
(Optional) string name of the metric instance.
- dtype
(Optional) data type of the metric result.
Value
a Metric instance is returned. The Metric instance can be passed
directly to compile(metrics = ), or used as a standalone object. See
?Metric for example usage.
See also
Other reduction metrics: metric_mean() metric_sum()
Other metrics: Metric() custom_metric() metric_auc() metric_binary_accuracy() metric_binary_crossentropy() metric_binary_focal_crossentropy() metric_binary_iou() metric_categorical_accuracy() metric_categorical_crossentropy() metric_categorical_focal_crossentropy() metric_categorical_hinge() metric_concordance_correlation() metric_cosine_similarity() metric_f1_score() metric_false_negatives() metric_false_positives() metric_fbeta_score() metric_hinge() metric_huber() metric_iou() metric_kl_divergence() metric_log_cosh() metric_log_cosh_error() metric_mean() metric_mean_absolute_error() metric_mean_absolute_percentage_error() metric_mean_iou() metric_mean_squared_error() metric_mean_squared_logarithmic_error() metric_one_hot_iou() metric_one_hot_mean_iou() metric_pearson_correlation() metric_poisson() metric_precision() metric_precision_at_recall() metric_r2_score() metric_recall() metric_recall_at_precision() metric_root_mean_squared_error() metric_sensitivity_at_specificity() metric_sparse_categorical_accuracy() metric_sparse_categorical_crossentropy() metric_sparse_top_k_categorical_accuracy() metric_specificity_at_sensitivity() metric_squared_hinge() metric_sum() metric_top_k_categorical_accuracy() metric_true_negatives() metric_true_positives()