It is defined as: sigmoid(x) = 1 / (1 + exp(-x))
.
For small values (<-5),
sigmoid
returns a value close to zero, and for large values (>5)
the result of the function gets close to 1.
Sigmoid is equivalent to a 2-element softmax, where the second element is assumed to be zero. The sigmoid function always returns a value between 0 and 1.
See also
Other activations: activation_elu()
activation_exponential()
activation_gelu()
activation_hard_sigmoid()
activation_leaky_relu()
activation_linear()
activation_log_softmax()
activation_mish()
activation_relu()
activation_relu6()
activation_selu()
activation_silu()
activation_softmax()
activation_softplus()
activation_softsign()
activation_tanh()