Package index
-
keras_model_sequential()
- Keras Model composed of a linear stack of layers
-
keras_model()
- Keras Model (Functional API)
-
keras_input()
- Create a Keras tensor (Functional API input).
-
clone_model()
- Clone a Functional or Sequential
Model
instance.
-
Model()
- Subclass the base Keras
Model
Class
-
compile(<keras.src.models.model.Model>)
- Configure a model for training.
-
fit(<keras.src.models.model.Model>)
- Train a model for a fixed number of epochs (dataset iterations).
-
plot(<keras_training_history>)
- Plot training history
-
predict(<keras.src.models.model.Model>)
- Generates output predictions for the input samples.
-
evaluate(<keras.src.models.model.Model>)
- Evaluate a Keras Model
-
train_on_batch()
- Runs a single gradient update on a single batch of data.
-
predict_on_batch()
- Returns predictions for a single batch of samples.
-
test_on_batch()
- Test the model on a single batch of samples.
-
freeze_weights()
unfreeze_weights()
- Freeze and unfreeze weights
-
summary(<keras.src.models.model.Model>)
format(<keras.src.models.model.Model>)
print(<keras.src.models.model.Model>)
- Print a summary of a Keras Model
-
plot(<keras.src.models.model.Model>)
- Plot a Keras model
-
get_config()
from_config()
- Layer/Model configuration
-
get_weights()
set_weights()
- Layer/Model weights as R arrays
-
get_layer()
- Retrieves a layer based on either its name (unique) or index.
-
count_params()
- Count the total number of scalars composing the weights.
-
pop_layer()
- Remove the last layer in a Sequential model
-
quantize_weights()
- Quantize the weights of a model.
-
save_model()
- Saves a model as a
.keras
file.
-
load_model()
- Loads a model saved via
save_model()
.
-
save_model_weights()
- Saves all layer weights to a
.weights.h5
file.
-
load_model_weights()
- Load weights from a file saved via
save_model_weights()
.
-
save_model_config()
load_model_config()
- Save and load model configuration as JSON
-
export_savedmodel(<keras.src.models.model.Model>)
- Create a TF SavedModel artifact for inference (e.g. via TF-Serving).
-
layer_tfsm()
- Reload a Keras model/layer that was saved via
export_savedmodel()
.
-
register_keras_serializable()
- Registers a custom object with the Keras serialization framework.
-
layer_dense()
- Just your regular densely-connected NN layer.
-
layer_einsum_dense()
- A layer that uses
einsum
as the backing computation.
-
layer_embedding()
- Turns positive integers (indexes) into dense vectors of fixed size.
-
layer_identity()
- Identity layer.
-
layer_lambda()
- Wraps arbitrary expressions as a
Layer
object.
-
layer_masking()
- Masks a sequence by using a mask value to skip timesteps.
-
layer_cropping_1d()
- Cropping layer for 1D input (e.g. temporal sequence).
-
layer_cropping_2d()
- Cropping layer for 2D input (e.g. picture).
-
layer_cropping_3d()
- Cropping layer for 3D data (e.g. spatial or spatio-temporal).
-
layer_flatten()
- Flattens the input. Does not affect the batch size.
-
layer_permute()
- Permutes the dimensions of the input according to a given pattern.
-
layer_repeat_vector()
- Repeats the input n times.
-
layer_reshape()
- Layer that reshapes inputs into the given shape.
-
layer_upsampling_1d()
- Upsampling layer for 1D inputs.
-
layer_upsampling_2d()
- Upsampling layer for 2D inputs.
-
layer_upsampling_3d()
- Upsampling layer for 3D inputs.
-
layer_zero_padding_1d()
- Zero-padding layer for 1D input (e.g. temporal sequence).
-
layer_zero_padding_2d()
- Zero-padding layer for 2D input (e.g. picture).
-
layer_zero_padding_3d()
- Zero-padding layer for 3D data (spatial or spatio-temporal).
-
layer_conv_1d()
- 1D convolution layer (e.g. temporal convolution).
-
layer_conv_1d_transpose()
- 1D transposed convolution layer.
-
layer_conv_2d()
- 2D convolution layer.
-
layer_conv_2d_transpose()
- 2D transposed convolution layer.
-
layer_conv_3d()
- 3D convolution layer.
-
layer_conv_3d_transpose()
- 3D transposed convolution layer.
-
layer_depthwise_conv_1d()
- 1D depthwise convolution layer.
-
layer_depthwise_conv_2d()
- 2D depthwise convolution layer.
-
layer_separable_conv_1d()
- 1D separable convolution layer.
-
layer_separable_conv_2d()
- 2D separable convolution layer.
-
layer_average_pooling_1d()
- Average pooling for temporal data.
-
layer_average_pooling_2d()
- Average pooling operation for 2D spatial data.
-
layer_average_pooling_3d()
- Average pooling operation for 3D data (spatial or spatio-temporal).
-
layer_global_average_pooling_1d()
- Global average pooling operation for temporal data.
-
layer_global_average_pooling_2d()
- Global average pooling operation for 2D data.
-
layer_global_average_pooling_3d()
- Global average pooling operation for 3D data.
-
layer_global_max_pooling_1d()
- Global max pooling operation for temporal data.
-
layer_global_max_pooling_2d()
- Global max pooling operation for 2D data.
-
layer_global_max_pooling_3d()
- Global max pooling operation for 3D data.
-
layer_max_pooling_1d()
- Max pooling operation for 1D temporal data.
-
layer_max_pooling_2d()
- Max pooling operation for 2D spatial data.
-
layer_max_pooling_3d()
- Max pooling operation for 3D data (spatial or spatio-temporal).
-
layer_activation()
- Applies an activation function to an output.
-
layer_activation_elu()
- Applies an Exponential Linear Unit function to an output.
-
layer_activation_leaky_relu()
- Leaky version of a Rectified Linear Unit activation layer.
-
layer_activation_parametric_relu()
- Parametric Rectified Linear Unit activation layer.
-
layer_activation_relu()
- Rectified Linear Unit activation function layer.
-
layer_activation_softmax()
- Softmax activation layer.
-
layer_bidirectional()
- Bidirectional wrapper for RNNs.
-
layer_conv_lstm_1d()
- 1D Convolutional LSTM.
-
layer_conv_lstm_2d()
- 2D Convolutional LSTM.
-
layer_conv_lstm_3d()
- 3D Convolutional LSTM.
-
layer_gru()
- Gated Recurrent Unit - Cho et al. 2014.
-
layer_lstm()
- Long Short-Term Memory layer - Hochreiter 1997.
-
layer_rnn()
- Base class for recurrent layers
-
layer_simple_rnn()
- Fully-connected RNN where the output is to be fed back as the new input.
-
layer_time_distributed()
- This wrapper allows to apply a layer to every temporal slice of an input.
-
rnn_cell_gru()
- Cell class for the GRU layer.
-
rnn_cell_lstm()
- Cell class for the LSTM layer.
-
rnn_cell_simple()
- Cell class for SimpleRNN.
-
rnn_cells_stack()
- Wrapper allowing a stack of RNN cells to behave as a single cell.
-
reset_state()
- Reset the state for a model, layer or metric.
-
layer_additive_attention()
- Additive attention layer, a.k.a. Bahdanau-style attention.
-
layer_attention()
- Dot-product attention layer, a.k.a. Luong-style attention.
-
layer_group_query_attention()
- Grouped Query Attention layer.
-
layer_multi_head_attention()
- Multi Head Attention layer.
-
layer_batch_normalization()
- Layer that normalizes its inputs.
-
layer_group_normalization()
- Group normalization layer.
-
layer_layer_normalization()
- Layer normalization layer (Ba et al., 2016).
-
layer_spectral_normalization()
- Performs spectral normalization on the weights of a target layer.
-
layer_unit_normalization()
- Unit normalization layer.
-
layer_activity_regularization()
- Layer that applies an update to the cost function based input activity.
-
layer_alpha_dropout()
- Applies Alpha Dropout to the input.
-
layer_dropout()
- Applies dropout to the input.
-
layer_gaussian_dropout()
- Apply multiplicative 1-centered Gaussian noise.
-
layer_gaussian_noise()
- Apply additive zero-centered Gaussian noise.
-
layer_spatial_dropout_1d()
- Spatial 1D version of Dropout.
-
layer_spatial_dropout_2d()
- Spatial 2D version of Dropout.
-
layer_spatial_dropout_3d()
- Spatial 3D version of Dropout.
-
layer_add()
- Performs elementwise addition operation.
-
layer_average()
- Averages a list of inputs element-wise..
-
layer_concatenate()
- Concatenates a list of inputs.
-
layer_dot()
- Computes element-wise dot product of two tensors.
-
layer_maximum()
- Computes element-wise maximum on a list of inputs.
-
layer_minimum()
- Computes elementwise minimum on a list of inputs.
-
layer_multiply()
- Performs elementwise multiplication.
-
layer_subtract()
- Performs elementwise subtraction.
-
layer_category_encoding()
- A preprocessing layer which encodes integer features.
-
layer_center_crop()
- A preprocessing layer which crops images.
-
layer_discretization()
- A preprocessing layer which buckets continuous features by ranges.
-
layer_feature_space()
feature_cross()
feature_custom()
feature_float()
feature_float_rescaled()
feature_float_normalized()
feature_float_discretized()
feature_integer_categorical()
feature_string_categorical()
feature_string_hashed()
feature_integer_hashed()
- One-stop utility for preprocessing and encoding structured data.
-
layer_hashed_crossing()
- A preprocessing layer which crosses features using the "hashing trick".
-
layer_hashing()
- A preprocessing layer which hashes and bins categorical features.
-
layer_integer_lookup()
- A preprocessing layer that maps integers to (possibly encoded) indices.
-
layer_mel_spectrogram()
- A preprocessing layer to convert raw audio signals to Mel spectrograms.
-
layer_normalization()
- A preprocessing layer that normalizes continuous features.
-
layer_random_brightness()
- A preprocessing layer which randomly adjusts brightness during training.
-
layer_random_contrast()
- A preprocessing layer which randomly adjusts contrast during training.
-
layer_random_crop()
- A preprocessing layer which randomly crops images during training.
-
layer_random_flip()
- A preprocessing layer which randomly flips images during training.
-
layer_random_rotation()
- A preprocessing layer which randomly rotates images during training.
-
layer_random_translation()
- A preprocessing layer which randomly translates images during training.
-
layer_random_zoom()
- A preprocessing layer which randomly zooms images during training.
-
layer_rescaling()
- A preprocessing layer which rescales input values to a new range.
-
layer_resizing()
- A preprocessing layer which resizes images.
-
layer_string_lookup()
- A preprocessing layer that maps strings to (possibly encoded) indices.
-
layer_text_vectorization()
get_vocabulary()
set_vocabulary()
- A preprocessing layer which maps text features to integer sequences.
-
adapt()
- Fits the state of the preprocessing layer to the data being passed
-
layer_tfsm()
- Reload a Keras model/layer that was saved via
export_savedmodel()
.
-
layer_jax_model_wrapper()
- Keras Layer that wraps a JAX model.
-
layer_flax_module_wrapper()
- Keras Layer that wraps a Flax module.
-
layer_torch_module_wrapper()
- Torch module wrapper layer.
-
layer_lambda()
- Wraps arbitrary expressions as a
Layer
object.
-
Layer()
- Define a custom
Layer
class.
-
get_config()
from_config()
- Layer/Model configuration
-
get_weights()
set_weights()
- Layer/Model weights as R arrays
-
count_params()
- Count the total number of scalars composing the weights.
-
reset_state()
- Reset the state for a model, layer or metric.
-
callback_model_checkpoint()
- Callback to save the Keras model or model weights at some frequency.
-
callback_backup_and_restore()
- Callback to back up and restore the training state.
-
callback_early_stopping()
- Stop training when a monitored metric has stopped improving.
-
callback_terminate_on_nan()
- Callback that terminates training when a NaN loss is encountered.
-
callback_learning_rate_scheduler()
- Learning rate scheduler.
-
callback_reduce_lr_on_plateau()
- Reduce learning rate when a metric has stopped improving.
-
callback_csv_logger()
- Callback that streams epoch results to a CSV file.
-
callback_tensorboard()
- Enable visualizations for TensorBoard.
-
callback_remote_monitor()
- Callback used to stream events to a server.
-
callback_lambda()
- Callback for creating simple, custom callbacks on-the-fly.
-
callback_swap_ema_weights()
- Swaps model weights and EMA weights before and after evaluation.
-
Callback()
- Define a custom
Callback
class
-
op_associative_scan()
- Performs a scan with an associative binary operation, in parallel.
-
op_cast()
- Cast a tensor to the desired dtype.
-
op_cond()
- Conditionally applies
true_fn
orfalse_fn
.
-
op_convert_to_numpy()
- Convert a tensor to a NumPy array.
-
op_convert_to_tensor()
- Convert an array to a tensor.
-
op_custom_gradient()
- Decorator to define a function with a custom gradient.
-
op_dtype()
- Return the dtype of the tensor input as a standardized string.
-
op_fori_loop()
- For loop implementation.
-
op_is_tensor()
- Check whether the given object is a tensor.
-
op_map()
- Map a function over leading array axes.
-
op_scan()
- Scan a function over leading array axes while carrying along state.
-
op_scatter()
- Returns a tensor of shape
shape
whereindices
are set tovalues
.
-
op_scatter_update()
- Update inputs via updates at scattered (sparse) indices.
-
op_searchsorted()
- Perform a binary search
-
op_shape()
- Gets the shape of the tensor input.
-
op_slice()
- Return a slice of an input tensor.
-
op_slice_update()
- Update an input by slicing in a tensor of updated values.
-
op_stop_gradient()
- Stops gradient computation.
-
op_switch()
- Apply exactly one of the
branches
given byindex
.
-
op_unstack()
- Unpacks the given dimension of a rank-R tensor into rank-(R-1) tensors.
-
op_vectorized_map()
- Parallel map of function
f
on the first axis of tensor(s)elements
.
-
op_while_loop()
- While loop implementation.
-
op_erf()
- Computes the error function of
x
, element-wise.
-
op_erfinv()
- Computes the inverse error function of
x
, element-wise.
-
op_extract_sequences()
- Expands the dimension of last axis into sequences of
sequence_length
.
-
op_fft()
- Computes the Fast Fourier Transform along last axis of input.
-
op_fft2()
- Computes the 2D Fast Fourier Transform along the last two axes of input.
-
op_in_top_k()
- Checks if the targets are in the top-k predictions.
-
op_irfft()
- Inverse real-valued Fast Fourier transform along the last axis.
-
op_istft()
- Inverse Short-Time Fourier Transform along the last axis of the input.
-
op_logsumexp()
- Computes the logarithm of sum of exponentials of elements in a tensor.
-
op_qr()
- Computes the QR decomposition of a tensor.
-
op_rfft()
- Real-valued Fast Fourier Transform along the last axis of the input.
-
op_rsqrt()
- Computes reciprocal of square root of x element-wise.
-
op_segment_max()
- Computes the max of segments in a tensor.
-
op_segment_sum()
- Computes the sum of segments in a tensor.
-
op_solve()
- Solves a linear system of equations given by
a x = b
.
-
op_stft()
- Short-Time Fourier Transform along the last axis of the input.
-
op_top_k()
- Finds the top-k values and their indices in a tensor.
-
op_abs()
- Compute the absolute value element-wise.
-
op_add()
- Add arguments element-wise.
-
op_all()
- Test whether all array elements along a given axis evaluate to
TRUE
.
-
op_any()
- Test whether any array element along a given axis evaluates to
TRUE
.
-
op_append()
- Append tensor
x2
to the end of tensorx1
.
-
op_arange()
- Return evenly spaced values within a given interval.
-
op_arccos()
- Trigonometric inverse cosine, element-wise.
-
op_arccosh()
- Inverse hyperbolic cosine, element-wise.
-
op_arcsin()
- Inverse sine, element-wise.
-
op_arcsinh()
- Inverse hyperbolic sine, element-wise.
-
op_arctan()
- Trigonometric inverse tangent, element-wise.
-
op_arctan2()
- Element-wise arc tangent of
x1/x2
choosing the quadrant correctly.
-
op_arctanh()
- Inverse hyperbolic tangent, element-wise.
-
op_argmax()
- Returns the indices of the maximum values along an axis.
-
op_argmin()
- Returns the indices of the minimum values along an axis.
-
op_argpartition()
- Performs an indirect partition along the given axis.
-
op_argsort()
- Returns the indices that would sort a tensor.
-
op_array()
- Create a tensor.
-
op_average()
- Compute the weighted average along the specified axis.
-
op_bincount()
- Count the number of occurrences of each value in a tensor of integers.
-
op_broadcast_to()
- Broadcast a tensor to a new shape.
-
op_ceil()
- Return the ceiling of the input, element-wise.
-
op_clip()
- Clip (limit) the values in a tensor.
-
op_concatenate()
- Join a sequence of tensors along an existing axis.
-
op_conj()
- Returns the complex conjugate, element-wise.
-
op_copy()
- Returns a copy of
x
.
-
op_correlate()
- Compute the cross-correlation of two 1-dimensional tensors.
-
op_cos()
- Cosine, element-wise.
-
op_cosh()
- Hyperbolic cosine, element-wise.
-
op_count_nonzero()
- Counts the number of non-zero values in
x
along the givenaxis
.
-
op_cross()
- Returns the cross product of two (arrays of) vectors.
-
op_ctc_decode()
- Decodes the output of a CTC model.
-
op_cumprod()
- Return the cumulative product of elements along a given axis.
-
op_cumsum()
- Returns the cumulative sum of elements along a given axis.
-
op_diag()
- Extract a diagonal or construct a diagonal array.
-
op_diagonal()
- Return specified diagonals.
-
op_diff()
- Calculate the n-th discrete difference along the given axis.
-
op_digitize()
- Returns the indices of the bins to which each value in
x
belongs.
-
op_divide()
- Divide arguments element-wise.
-
op_divide_no_nan()
- Safe element-wise division which returns 0 where the denominator is 0.
-
op_dot()
- Dot product of two tensors.
-
op_einsum()
- Evaluates the Einstein summation convention on the operands.
-
op_empty()
- Return a tensor of given shape and type filled with uninitialized data.
-
op_equal()
- Returns
(x1 == x2)
element-wise.
-
op_exp()
- Calculate the exponential of all elements in the input tensor.
-
op_expand_dims()
- Expand the shape of a tensor.
-
op_expm1()
- Calculate
exp(x) - 1
for all elements in the tensor.
-
op_eye()
- Return a 2-D tensor with ones on the diagonal and zeros elsewhere.
-
op_flip()
- Reverse the order of elements in the tensor along the given axis.
-
op_floor()
- Return the floor of the input, element-wise.
-
op_floor_divide()
- Returns the largest integer smaller or equal to the division of inputs.
-
op_full()
- Return a new tensor of given shape and type, filled with
fill_value
.
-
op_full_like()
- Return a full tensor with the same shape and type as the given tensor.
-
op_get_item()
- Return
x[key]
.
-
op_greater()
- Return the truth value of
x1 > x2
element-wise.
-
op_greater_equal()
- Return the truth value of
x1 >= x2
element-wise.
-
op_hstack()
- Stack tensors in sequence horizontally (column wise).
-
op_identity()
- Return the identity tensor.
-
op_imag()
- Return the imaginary part of the complex argument.
-
op_isclose()
- Return whether two tensors are element-wise almost equal.
-
op_isfinite()
- Return whether a tensor is finite, element-wise.
-
op_isinf()
- Test element-wise for positive or negative infinity.
-
op_isnan()
- Test element-wise for NaN and return result as a boolean tensor.
-
op_less()
- Return the truth value of
x1 < x2
element-wise.
-
op_less_equal()
- Return the truth value of
x1 <= x2
element-wise.
-
op_linspace()
- Return evenly spaced numbers over a specified interval.
-
op_log()
- Natural logarithm, element-wise.
-
op_log10()
- Return the base 10 logarithm of the input tensor, element-wise.
-
op_log1p()
- Returns the natural logarithm of one plus the
x
, element-wise.
-
op_log2()
- Base-2 logarithm of
x
, element-wise.
-
op_logaddexp()
- Logarithm of the sum of exponentiations of the inputs.
-
op_logical_and()
- Computes the element-wise logical AND of the given input tensors.
-
op_logical_not()
- Computes the element-wise NOT of the given input tensor.
-
op_logical_or()
- Computes the element-wise logical OR of the given input tensors.
-
op_logical_xor()
- Compute the truth value of
x1 XOR x2
, element-wise.
-
op_logspace()
- Returns numbers spaced evenly on a log scale.
-
op_lstsq()
- Return the least-squares solution to a linear matrix equation.
-
op_matmul()
- Matrix product of two tensors.
-
op_max()
- Return the maximum of a tensor or maximum along an axis.
-
op_maximum()
op_pmax()
- Element-wise maximum of
x1
andx2
.
-
op_mean()
- Compute the arithmetic mean along the specified axes.
-
op_median()
- Compute the median along the specified axis.
-
op_meshgrid()
- Creates grids of coordinates from coordinate vectors.
-
op_min()
- Return the minimum of a tensor or minimum along an axis.
-
op_minimum()
op_pmin()
- Element-wise minimum of
x1
andx2
.
-
op_mod()
- Returns the element-wise remainder of division.
-
op_moveaxis()
- Move axes of a tensor to new positions.
-
op_multiply()
- Multiply arguments element-wise.
-
op_nan_to_num()
- Replace NaN with zero and infinity with large finite numbers.
-
op_ndim()
- Return the number of dimensions of a tensor.
-
op_negative()
- Numerical negative, element-wise.
-
op_nonzero()
- Return the indices of the elements that are non-zero.
-
op_not_equal()
- Return
(x1 != x2)
element-wise.
-
op_ones()
- Return a new tensor of given shape and type, filled with ones.
-
op_ones_like()
- Return a tensor of ones with the same shape and type of
x
.
-
op_outer()
- Compute the outer product of two vectors.
-
op_pad()
- Pad a tensor.
-
op_power()
- First tensor elements raised to powers from second tensor, element-wise.
-
op_prod()
- Return the product of tensor elements over a given axis.
-
op_quantile()
- Compute the q-th quantile(s) of the data along the specified axis.
-
op_ravel()
- Return a contiguous flattened tensor.
-
op_real()
- Return the real part of the complex argument.
-
op_reciprocal()
- Return the reciprocal of the argument, element-wise.
-
op_repeat()
- Repeat each element of a tensor after themselves.
-
op_reshape()
- Gives a new shape to a tensor without changing its data.
-
op_roll()
- Roll tensor elements along a given axis.
-
op_round()
- Evenly round to the given number of decimals.
-
op_select()
- Return elements from
choicelist
, based on conditions incondlist
.
-
op_sign()
- Returns a tensor with the signs of the elements of
x
.
-
op_sin()
- Trigonometric sine, element-wise.
-
op_sinh()
- Hyperbolic sine, element-wise.
-
op_size()
- Return the number of elements in a tensor.
-
op_sort()
- Sorts the elements of
x
along a given axis in ascending order.
-
op_split()
- Split a tensor into chunks.
-
op_sqrt()
- Return the non-negative square root of a tensor, element-wise.
-
op_square()
- Return the element-wise square of the input.
-
op_squeeze()
- Remove axes of length one from
x
.
-
op_stack()
- Join a sequence of tensors along a new axis.
-
op_std()
- Compute the standard deviation along the specified axis.
-
op_subtract()
- Subtract arguments element-wise.
-
op_sum()
- Sum of a tensor over the given axes.
-
op_swapaxes()
- Interchange two axes of a tensor.
-
op_take()
- Take elements from a tensor along an axis.
-
op_take_along_axis()
- Select values from
x
at the 1-Dindices
along the given axis.
-
op_tan()
- Compute tangent, element-wise.
-
op_tanh()
- Hyperbolic tangent, element-wise.
-
op_tensordot()
- Compute the tensor dot product along specified axes.
-
op_tile()
- Repeat
x
the number of times given byrepeats
.
-
op_trace()
- Return the sum along diagonals of the tensor.
-
op_transpose()
- Returns a tensor with
axes
transposed.
-
op_tri()
- Return a tensor with ones at and below a diagonal and zeros elsewhere.
-
op_tril()
- Return lower triangle of a tensor.
-
op_triu()
- Return upper triangle of a tensor.
-
op_var()
- Compute the variance along the specified axes.
-
op_vdot()
- Return the dot product of two vectors.
-
op_vectorize()
- Turn a function into a vectorized function.
-
op_vstack()
- Stack tensors in sequence vertically (row wise).
-
op_where()
- Return elements chosen from
x1
orx2
depending oncondition
.
-
op_zeros()
- Return a new tensor of given shape and type, filled with zeros.
-
op_zeros_like()
- Return a tensor of zeros with the same shape and type as
x
.
-
op_average_pool()
- Average pooling operation.
-
op_batch_normalization()
- Normalizes
x
bymean
andvariance
.
-
op_binary_crossentropy()
- Computes binary cross-entropy loss between target and output tensor.
-
op_categorical_crossentropy()
- Computes categorical cross-entropy loss between target and output tensor.
-
op_conv()
- General N-D convolution.
-
op_conv_transpose()
- General N-D convolution transpose.
-
op_ctc_loss()
- CTC (Connectionist Temporal Classification) loss.
-
op_depthwise_conv()
- General N-D depthwise convolution.
-
op_elu()
- Exponential Linear Unit activation function.
-
op_gelu()
- Gaussian Error Linear Unit (GELU) activation function.
-
op_hard_sigmoid()
- Hard sigmoid activation function.
-
op_hard_silu()
op_hard_swish()
- Hard SiLU activation function, also known as Hard Swish.
-
op_leaky_relu()
- Leaky version of a Rectified Linear Unit activation function.
-
op_log_sigmoid()
- Logarithm of the sigmoid activation function.
-
op_log_softmax()
- Log-softmax activation function.
-
op_max_pool()
- Max pooling operation.
-
op_moments()
- Calculates the mean and variance of
x
.
-
op_multi_hot()
- Encodes integer labels as multi-hot vectors.
-
op_normalize()
- Normalizes
x
over the specified axis.
-
op_one_hot()
- Converts integer tensor
x
into a one-hot tensor.
-
op_psnr()
- Peak Signal-to-Noise Ratio (PSNR) function.
-
op_relu()
- Rectified linear unit activation function.
-
op_relu6()
- Rectified linear unit activation function with upper bound of 6.
-
op_selu()
- Scaled Exponential Linear Unit (SELU) activation function.
-
op_separable_conv()
- General N-D separable convolution.
-
op_sigmoid()
- Sigmoid activation function.
-
op_silu()
- Sigmoid Linear Unit (SiLU) activation function, also known as Swish.
-
op_softmax()
- Softmax activation function.
-
op_softplus()
- Softplus activation function.
-
op_softsign()
- Softsign activation function.
-
op_sparse_categorical_crossentropy()
- Computes sparse categorical cross-entropy loss.
-
op_cholesky()
- Computes the Cholesky decomposition of a positive semi-definite matrix.
-
op_det()
- Computes the determinant of a square tensor.
-
op_eig()
- Computes the eigenvalues and eigenvectors of a square matrix.
-
op_eigh()
- Computes the eigenvalues and eigenvectors of a complex Hermitian.
-
op_inv()
- Computes the inverse of a square tensor.
-
op_lstsq()
- Return the least-squares solution to a linear matrix equation.
-
op_lu_factor()
- Computes the lower-upper decomposition of a square matrix.
-
op_norm()
- Matrix or vector norm.
-
op_slogdet()
- Compute the sign and natural logarithm of the determinant of a matrix.
-
op_solve_triangular()
- Solves a linear system of equations given by
a %*% x = b
.
-
op_svd()
- Computes the singular value decomposition of a matrix.
-
op_image_affine_transform()
- Applies the given transform(s) to the image(s).
-
op_image_crop()
- Crop
images
to a specifiedheight
andwidth
.
-
op_image_extract_patches()
- Extracts patches from the image(s).
-
op_image_hsv_to_rgb()
- Convert HSV images to RGB.
-
op_image_map_coordinates()
- Map the input array to new coordinates by interpolation.
-
op_image_pad()
- Pad
images
with zeros to the specifiedheight
andwidth
.
-
op_image_resize()
- Resize images to size using the specified interpolation method.
-
op_image_rgb_to_grayscale()
- Convert RGB images to grayscale.
-
op_image_rgb_to_hsv()
- Convert RGB images to HSV.
-
loss_binary_crossentropy()
- Computes the cross-entropy loss between true labels and predicted labels.
-
loss_binary_focal_crossentropy()
- Computes focal cross-entropy loss between true labels and predictions.
-
loss_categorical_crossentropy()
- Computes the crossentropy loss between the labels and predictions.
-
loss_categorical_focal_crossentropy()
- Computes the alpha balanced focal crossentropy loss.
-
loss_categorical_hinge()
- Computes the categorical hinge loss between
y_true
&y_pred
.
-
loss_cosine_similarity()
- Computes the cosine similarity between
y_true
&y_pred
.
-
loss_ctc()
- CTC (Connectionist Temporal Classification) loss.
-
loss_dice()
- Computes the Dice loss value between
y_true
andy_pred
.
-
loss_hinge()
- Computes the hinge loss between
y_true
&y_pred
.
-
loss_huber()
- Computes the Huber loss between
y_true
&y_pred
.
-
loss_kl_divergence()
- Computes Kullback-Leibler divergence loss between
y_true
&y_pred
.
-
loss_log_cosh()
- Computes the logarithm of the hyperbolic cosine of the prediction error.
-
loss_mean_absolute_error()
- Computes the mean of absolute difference between labels and predictions.
-
loss_mean_absolute_percentage_error()
- Computes the mean absolute percentage error between
y_true
andy_pred
.
-
loss_mean_squared_error()
- Computes the mean of squares of errors between labels and predictions.
-
loss_mean_squared_logarithmic_error()
- Computes the mean squared logarithmic error between
y_true
andy_pred
.
-
loss_poisson()
- Computes the Poisson loss between
y_true
&y_pred
.
-
loss_sparse_categorical_crossentropy()
- Computes the crossentropy loss between the labels and predictions.
-
loss_squared_hinge()
- Computes the squared hinge loss between
y_true
&y_pred
.
-
loss_tversky()
- Computes the Tversky loss value between
y_true
andy_pred
.
-
Loss()
- Subclass the base
Loss
class
-
metric_auc()
- Approximates the AUC (Area under the curve) of the ROC or PR curves.
-
metric_binary_accuracy()
- Calculates how often predictions match binary labels.
-
metric_binary_crossentropy()
- Computes the crossentropy metric between the labels and predictions.
-
metric_binary_focal_crossentropy()
- Computes the binary focal crossentropy loss.
-
metric_binary_iou()
- Computes the Intersection-Over-Union metric for class 0 and/or 1.
-
metric_categorical_accuracy()
- Calculates how often predictions match one-hot labels.
-
metric_categorical_crossentropy()
- Computes the crossentropy metric between the labels and predictions.
-
metric_categorical_focal_crossentropy()
- Computes the categorical focal crossentropy loss.
-
metric_categorical_hinge()
- Computes the categorical hinge metric between
y_true
andy_pred
.
-
metric_cosine_similarity()
- Computes the cosine similarity between the labels and predictions.
-
metric_f1_score()
- Computes F-1 Score.
-
metric_false_negatives()
- Calculates the number of false negatives.
-
metric_false_positives()
- Calculates the number of false positives.
-
metric_fbeta_score()
- Computes F-Beta score.
-
metric_hinge()
- Computes the hinge metric between
y_true
andy_pred
.
-
metric_huber()
- Computes Huber loss value.
-
metric_iou()
- Computes the Intersection-Over-Union metric for specific target classes.
-
metric_kl_divergence()
- Computes Kullback-Leibler divergence metric between
y_true
and
-
metric_log_cosh()
- Logarithm of the hyperbolic cosine of the prediction error.
-
metric_log_cosh_error()
- Computes the logarithm of the hyperbolic cosine of the prediction error.
-
metric_mean()
- Compute the (weighted) mean of the given values.
-
metric_mean_absolute_error()
- Computes the mean absolute error between the labels and predictions.
-
metric_mean_absolute_percentage_error()
- Computes mean absolute percentage error between
y_true
andy_pred
.
-
metric_mean_iou()
- Computes the mean Intersection-Over-Union metric.
-
metric_mean_squared_error()
- Computes the mean squared error between
y_true
andy_pred
.
-
metric_mean_squared_logarithmic_error()
- Computes mean squared logarithmic error between
y_true
andy_pred
.
-
metric_mean_wrapper()
- Wrap a stateless metric function with the
Mean
metric.
-
metric_one_hot_iou()
- Computes the Intersection-Over-Union metric for one-hot encoded labels.
-
metric_one_hot_mean_iou()
- Computes mean Intersection-Over-Union metric for one-hot encoded labels.
-
metric_poisson()
- Computes the Poisson metric between
y_true
andy_pred
.
-
metric_precision()
- Computes the precision of the predictions with respect to the labels.
-
metric_precision_at_recall()
- Computes best precision where recall is >= specified value.
-
metric_r2_score()
- Computes R2 score.
-
metric_recall()
- Computes the recall of the predictions with respect to the labels.
-
metric_recall_at_precision()
- Computes best recall where precision is >= specified value.
-
metric_root_mean_squared_error()
- Computes root mean squared error metric between
y_true
andy_pred
.
-
metric_sensitivity_at_specificity()
- Computes best sensitivity where specificity is >= specified value.
-
metric_sparse_categorical_accuracy()
- Calculates how often predictions match integer labels.
-
metric_sparse_categorical_crossentropy()
- Computes the crossentropy metric between the labels and predictions.
-
metric_sparse_top_k_categorical_accuracy()
- Computes how often integer targets are in the top
K
predictions.
-
metric_specificity_at_sensitivity()
- Computes best specificity where sensitivity is >= specified value.
-
metric_squared_hinge()
- Computes the hinge metric between
y_true
andy_pred
.
-
metric_sum()
- Compute the (weighted) sum of the given values.
-
metric_top_k_categorical_accuracy()
- Computes how often targets are in the top
K
predictions.
-
metric_true_negatives()
- Calculates the number of true negatives.
-
metric_true_positives()
- Calculates the number of true positives.
-
custom_metric()
- Custom metric function
-
reset_state()
- Reset the state for a model, layer or metric.
-
Metric()
- Subclass the base
Metric
class
Data Loading
Keras data loading utilities help you quickly go from raw data to a TF Dataset
object that can be used to efficiently train a model. These loading utilites can be combined with preprocessing layers to futher transform your input dataset before training.
-
image_dataset_from_directory()
- Generates a
tf.data.Dataset
from image files in a directory.
-
text_dataset_from_directory()
- Generates a
tf.data.Dataset
from text files in a directory.
-
audio_dataset_from_directory()
- Generates a
tf.data.Dataset
from audio files in a directory.
-
timeseries_dataset_from_array()
- Creates a dataset of sliding windows over a timeseries provided as array.
-
layer_feature_space()
feature_cross()
feature_custom()
feature_float()
feature_float_rescaled()
feature_float_normalized()
feature_float_discretized()
feature_integer_categorical()
feature_string_categorical()
feature_string_hashed()
feature_integer_hashed()
- One-stop utility for preprocessing and encoding structured data.
-
adapt()
- Fits the state of the preprocessing layer to the data being passed
-
layer_normalization()
- A preprocessing layer that normalizes continuous features.
-
layer_discretization()
- A preprocessing layer which buckets continuous features by ranges.
-
layer_category_encoding()
- A preprocessing layer which encodes integer features.
-
layer_hashing()
- A preprocessing layer which hashes and bins categorical features.
-
layer_hashed_crossing()
- A preprocessing layer which crosses features using the "hashing trick".
-
layer_string_lookup()
- A preprocessing layer that maps strings to (possibly encoded) indices.
-
layer_integer_lookup()
- A preprocessing layer that maps integers to (possibly encoded) indices.
-
layer_text_vectorization()
get_vocabulary()
set_vocabulary()
- A preprocessing layer which maps text features to integer sequences.
-
timeseries_dataset_from_array()
- Creates a dataset of sliding windows over a timeseries provided as array.
-
pad_sequences()
- Pads sequences to the same length.
-
layer_resizing()
- A preprocessing layer which resizes images.
-
layer_rescaling()
- A preprocessing layer which rescales input values to a new range.
-
layer_center_crop()
- A preprocessing layer which crops images.
-
image_array_save()
- Saves an image stored as an array to a path or file object.
-
image_dataset_from_directory()
- Generates a
tf.data.Dataset
from image files in a directory.
-
image_from_array()
- Converts a 3D array to a PIL Image instance.
-
image_load()
- Loads an image into PIL format.
-
image_smart_resize()
- Resize images to a target size without aspect ratio distortion.
-
image_to_array()
- Converts a PIL Image instance to a matrix.
-
op_image_affine_transform()
- Applies the given transform(s) to the image(s).
-
op_image_crop()
- Crop
images
to a specifiedheight
andwidth
.
-
op_image_extract_patches()
- Extracts patches from the image(s).
-
op_image_hsv_to_rgb()
- Convert HSV images to RGB.
-
op_image_map_coordinates()
- Map the input array to new coordinates by interpolation.
-
op_image_pad()
- Pad
images
with zeros to the specifiedheight
andwidth
.
-
op_image_resize()
- Resize images to size using the specified interpolation method.
-
op_image_rgb_to_grayscale()
- Convert RGB images to grayscale.
-
op_image_rgb_to_hsv()
- Convert RGB images to HSV.
-
layer_random_crop()
- A preprocessing layer which randomly crops images during training.
-
layer_random_flip()
- A preprocessing layer which randomly flips images during training.
-
layer_random_translation()
- A preprocessing layer which randomly translates images during training.
-
layer_random_rotation()
- A preprocessing layer which randomly rotates images during training.
-
layer_random_zoom()
- A preprocessing layer which randomly zooms images during training.
-
layer_random_contrast()
- A preprocessing layer which randomly adjusts contrast during training.
-
layer_random_brightness()
- A preprocessing layer which randomly adjusts brightness during training.
-
application_preprocess_inputs()
application_decode_predictions()
- Preprocessing and postprocessing utilities
-
optimizer_adadelta()
- Optimizer that implements the Adadelta algorithm.
-
optimizer_adafactor()
- Optimizer that implements the Adafactor algorithm.
-
optimizer_adagrad()
- Optimizer that implements the Adagrad algorithm.
-
optimizer_adam()
- Optimizer that implements the Adam algorithm.
-
optimizer_adam_w()
- Optimizer that implements the AdamW algorithm.
-
optimizer_adamax()
- Optimizer that implements the Adamax algorithm.
-
optimizer_ftrl()
- Optimizer that implements the FTRL algorithm.
-
optimizer_lamb()
- Optimizer that implements the Lamb algorithm.
-
optimizer_lion()
- Optimizer that implements the Lion algorithm.
-
optimizer_loss_scale()
- An optimizer that dynamically scales the loss to prevent underflow.
-
optimizer_nadam()
- Optimizer that implements the Nadam algorithm.
-
optimizer_rmsprop()
- Optimizer that implements the RMSprop algorithm.
-
optimizer_sgd()
- Gradient descent (with momentum) optimizer.
-
learning_rate_schedule_cosine_decay()
- A
LearningRateSchedule
that uses a cosine decay with optional warmup.
-
learning_rate_schedule_cosine_decay_restarts()
- A
LearningRateSchedule
that uses a cosine decay schedule with restarts.
-
learning_rate_schedule_exponential_decay()
- A
LearningRateSchedule
that uses an exponential decay schedule.
-
learning_rate_schedule_inverse_time_decay()
- A
LearningRateSchedule
that uses an inverse time decay schedule.
-
learning_rate_schedule_piecewise_constant_decay()
- A
LearningRateSchedule
that uses a piecewise constant decay schedule.
-
learning_rate_schedule_polynomial_decay()
- A
LearningRateSchedule
that uses a polynomial decay schedule.
-
LearningRateSchedule()
- Define a custom
LearningRateSchedule
class
-
initializer_constant()
- Initializer that generates tensors with constant values.
-
initializer_glorot_normal()
- The Glorot normal initializer, also called Xavier normal initializer.
-
initializer_glorot_uniform()
- The Glorot uniform initializer, also called Xavier uniform initializer.
-
initializer_he_normal()
- He normal initializer.
-
initializer_he_uniform()
- He uniform variance scaling initializer.
-
initializer_identity()
- Initializer that generates the identity matrix.
-
initializer_lecun_normal()
- Lecun normal initializer.
-
initializer_lecun_uniform()
- Lecun uniform initializer.
-
initializer_ones()
- Initializer that generates tensors initialized to 1.
-
initializer_orthogonal()
- Initializer that generates an orthogonal matrix.
-
initializer_random_normal()
- Random normal initializer.
-
initializer_random_uniform()
- Random uniform initializer.
-
initializer_truncated_normal()
- Initializer that generates a truncated normal distribution.
-
initializer_variance_scaling()
- Initializer that adapts its scale to the shape of its input tensors.
-
initializer_zeros()
- Initializer that generates tensors initialized to 0.
-
Constraint()
- Define a custom
Constraint
class
-
constraint_maxnorm()
- MaxNorm weight constraint.
-
constraint_minmaxnorm()
- MinMaxNorm weight constraint.
-
constraint_nonneg()
- Constrains the weights to be non-negative.
-
constraint_unitnorm()
- Constrains the weights incident to each hidden unit to have unit norm.
-
regularizer_l1()
- A regularizer that applies a L1 regularization penalty.
-
regularizer_l1_l2()
- A regularizer that applies both L1 and L2 regularization penalties.
-
regularizer_l2()
- A regularizer that applies a L2 regularization penalty.
-
regularizer_orthogonal()
- Regularizer that encourages input vectors to be orthogonal to each other.
-
activation_elu()
- Exponential Linear Unit.
-
activation_exponential()
- Exponential activation function.
-
activation_gelu()
- Gaussian error linear unit (GELU) activation function.
-
activation_hard_sigmoid()
- Hard sigmoid activation function.
-
activation_hard_silu()
activation_hard_swish()
- Hard SiLU activation function, also known as Hard Swish.
-
activation_leaky_relu()
- Leaky relu activation function.
-
activation_linear()
- Linear activation function (pass-through).
-
activation_log_softmax()
- Log-Softmax activation function.
-
activation_mish()
- Mish activation function.
-
activation_relu()
- Applies the rectified linear unit activation function.
-
activation_relu6()
- Relu6 activation function.
-
activation_selu()
- Scaled Exponential Linear Unit (SELU).
-
activation_sigmoid()
- Sigmoid activation function.
-
activation_silu()
- Swish (or Silu) activation function.
-
activation_softmax()
- Softmax converts a vector of values to a probability distribution.
-
activation_softplus()
- Softplus activation function.
-
activation_softsign()
- Softsign activation function.
-
activation_tanh()
- Hyperbolic tangent activation function.
-
random_uniform()
- Draw samples from a uniform distribution.
-
random_normal()
- Draw random samples from a normal (Gaussian) distribution.
-
random_truncated_normal()
- Draw samples from a truncated normal distribution.
-
random_gamma()
- Draw random samples from the Gamma distribution.
-
random_categorical()
- Draws samples from a categorical distribution.
-
random_integer()
- Draw random integers from a uniform distribution.
-
random_dropout()
- Randomly set some values in a tensor to 0.
-
random_shuffle()
- Shuffle the elements of a tensor uniformly at random along an axis.
-
random_beta()
- Draw samples from a Beta distribution.
-
random_binomial()
- Draw samples from a Binomial distribution.
-
random_seed_generator()
- Generates variable seeds upon each call to a RNG-using function.
-
dataset_boston_housing()
- Boston housing price regression dataset
-
dataset_cifar10()
- CIFAR10 small image classification
-
dataset_cifar100()
- CIFAR100 small image classification
-
dataset_fashion_mnist()
- Fashion-MNIST database of fashion articles
-
dataset_imdb()
dataset_imdb_word_index()
- IMDB Movie reviews sentiment classification
-
dataset_mnist()
- MNIST database of handwritten digits
-
dataset_reuters()
dataset_reuters_word_index()
- Reuters newswire topics classification
-
config_backend()
- Publicly accessible method for determining the current backend.
-
config_disable_interactive_logging()
- Turn off interactive logging.
-
config_disable_traceback_filtering()
- Turn off traceback filtering.
-
config_dtype_policy()
- Returns the current default dtype policy object.
-
config_enable_interactive_logging()
- Turn on interactive logging.
-
config_enable_traceback_filtering()
- Turn on traceback filtering.
-
config_enable_unsafe_deserialization()
- Disables safe mode globally, allowing deserialization of lambdas.
-
config_epsilon()
- Return the value of the fuzz factor used in numeric expressions.
-
config_floatx()
- Return the default float type, as a string.
-
config_image_data_format()
- Return the default image data format convention.
-
config_is_interactive_logging_enabled()
- Check if interactive logging is enabled.
-
config_is_traceback_filtering_enabled()
- Check if traceback filtering is enabled.
-
config_set_backend()
- Reload the backend (and the Keras package).
-
config_set_dtype_policy()
- Sets the default dtype policy globally.
-
config_set_epsilon()
- Set the value of the fuzz factor used in numeric expressions.
-
config_set_floatx()
- Set the default float dtype.
-
config_set_image_data_format()
- Set the value of the image data format convention.
-
install_keras()
- Install Keras
-
use_backend()
- Configure a Keras backend
-
shape()
format(<keras_shape>)
print(<keras_shape>)
`[`(<keras_shape>)
as.integer(<keras_shape>)
as.list(<keras_shape>)
`==`(<keras_shape>)
`!=`(<keras_shape>)
- Tensor shape utility
-
set_random_seed()
- Sets all random seeds (Python, NumPy, and backend framework, e.g. TF).
-
clear_session()
- Resets all state generated by Keras.
-
get_source_inputs()
- Returns the list of input tensors necessary to compute
tensor
.
-
keras
- Main Keras module
-
normalize()
- Normalizes an array.
-
to_categorical()
- Converts a class vector (integers) to binary class matrix.
-
zip_lists()
- Zip lists
-
get_file()
- Downloads a file from a URL if it not already in the cache.
-
split_dataset()
- Splits a dataset into a left half and a right half (e.g. train / test).
-
register_keras_serializable()
- Registers a custom object with the Keras serialization framework.
-
get_custom_objects()
set_custom_objects()
- Get/set the currently registered custom objects.
-
get_registered_name()
- Returns the name registered to an object within the Keras framework.
-
get_registered_object()
- Returns the class associated with
name
if it is registered with Keras.
-
serialize_keras_object()
- Retrieve the full config by serializing the Keras object.
-
deserialize_keras_object()
- Retrieve the object by deserializing the config dict.
-
with_custom_object_scope()
- Provide a scope with mappings of names to custom objects
-
config_enable_unsafe_deserialization()
- Disables safe mode globally, allowing deserialization of lambdas.
-
Layer()
- Define a custom
Layer
class.
-
Loss()
- Subclass the base
Loss
class
-
Metric()
- Subclass the base
Metric
class
-
Callback()
- Define a custom
Callback
class
-
Constraint()
- Define a custom
Constraint
class
-
Model()
- Subclass the base Keras
Model
Class
-
LearningRateSchedule()
- Define a custom
LearningRateSchedule
class
-
active_property()
- Create an active property class method
-
application_preprocess_inputs()
application_decode_predictions()
- Preprocessing and postprocessing utilities
-
application_convnext_base()
- Instantiates the ConvNeXtBase architecture.
-
application_convnext_large()
- Instantiates the ConvNeXtLarge architecture.
-
application_convnext_small()
- Instantiates the ConvNeXtSmall architecture.
-
application_convnext_tiny()
- Instantiates the ConvNeXtTiny architecture.
-
application_convnext_xlarge()
- Instantiates the ConvNeXtXLarge architecture.
-
application_densenet121()
- Instantiates the Densenet121 architecture.
-
application_densenet169()
- Instantiates the Densenet169 architecture.
-
application_densenet201()
- Instantiates the Densenet201 architecture.
-
application_efficientnet_b0()
- Instantiates the EfficientNetB0 architecture.
-
application_efficientnet_b1()
- Instantiates the EfficientNetB1 architecture.
-
application_efficientnet_b2()
- Instantiates the EfficientNetB2 architecture.
-
application_efficientnet_b3()
- Instantiates the EfficientNetB3 architecture.
-
application_efficientnet_b4()
- Instantiates the EfficientNetB4 architecture.
-
application_efficientnet_b5()
- Instantiates the EfficientNetB5 architecture.
-
application_efficientnet_b6()
- Instantiates the EfficientNetB6 architecture.
-
application_efficientnet_b7()
- Instantiates the EfficientNetB7 architecture.
-
application_efficientnet_v2b0()
- Instantiates the EfficientNetV2B0 architecture.
-
application_efficientnet_v2b1()
- Instantiates the EfficientNetV2B1 architecture.
-
application_efficientnet_v2b2()
- Instantiates the EfficientNetV2B2 architecture.
-
application_efficientnet_v2b3()
- Instantiates the EfficientNetV2B3 architecture.
-
application_efficientnet_v2l()
- Instantiates the EfficientNetV2L architecture.
-
application_efficientnet_v2m()
- Instantiates the EfficientNetV2M architecture.
-
application_efficientnet_v2s()
- Instantiates the EfficientNetV2S architecture.
-
application_inception_resnet_v2()
- Instantiates the Inception-ResNet v2 architecture.
-
application_inception_v3()
- Instantiates the Inception v3 architecture.
-
application_mobilenet()
- Instantiates the MobileNet architecture.
-
application_mobilenet_v2()
- Instantiates the MobileNetV2 architecture.
-
application_mobilenet_v3_large()
- Instantiates the MobileNetV3Large architecture.
-
application_mobilenet_v3_small()
- Instantiates the MobileNetV3Small architecture.
-
application_nasnet_large()
- Instantiates a NASNet model in ImageNet mode.
-
application_nasnet_mobile()
- Instantiates a Mobile NASNet model in ImageNet mode.
-
application_resnet101()
- Instantiates the ResNet101 architecture.
-
application_resnet101_v2()
- Instantiates the ResNet101V2 architecture.
-
application_resnet152()
- Instantiates the ResNet152 architecture.
-
application_resnet152_v2()
- Instantiates the ResNet152V2 architecture.
-
application_resnet50()
- Instantiates the ResNet50 architecture.
-
application_resnet50_v2()
- Instantiates the ResNet50V2 architecture.
-
application_vgg16()
- Instantiates the VGG16 model.
-
application_vgg19()
- Instantiates the VGG19 model.
-
application_xception()
- Instantiates the Xception architecture.