Generates a tf.data.Dataset
from image files in a directory.
Source: R/dataset-utils.R
image_dataset_from_directory.Rd
If your directory structure is:
main_directory/
...class_a/
......a_image_1.jpg
......a_image_2.jpg
...class_b/
......b_image_1.jpg
......b_image_2.jpg
Then calling image_dataset_from_directory(main_directory, labels = 'inferred')
will return a tf.data.Dataset
that yields batches of
images from the subdirectories class_a
and class_b
, together with labels
0 and 1 (0 corresponding to class_a
and 1 corresponding to class_b
).
Supported image formats: .jpeg
, .jpg
, .png
, .bmp
, .gif
.
Animated gifs are truncated to the first frame.
Usage
image_dataset_from_directory(
directory,
labels = "inferred",
label_mode = "int",
class_names = NULL,
color_mode = "rgb",
batch_size = 32L,
image_size = c(256L, 256L),
shuffle = TRUE,
seed = NULL,
validation_split = NULL,
subset = NULL,
interpolation = "bilinear",
follow_links = FALSE,
crop_to_aspect_ratio = FALSE,
pad_to_aspect_ratio = FALSE,
data_format = NULL,
verbose = TRUE
)
Arguments
- directory
Directory where the data is located. If
labels
is"inferred"
, it should contain subdirectories, each containing images for a class. Otherwise, the directory structure is ignored.- labels
Either
"inferred"
(labels are generated from the directory structure),NULL
(no labels), or a list/tuple of integer labels of the same size as the number of image files found in the directory. Labels should be sorted according to the alphanumeric order of the image file paths (obtained viaos.walk(directory)
in Python).- label_mode
String describing the encoding of
labels
. Options are:"int"
: means that the labels are encoded as integers (e.g. forsparse_categorical_crossentropy
loss)."categorical"
means that the labels are encoded as a categorical vector (e.g. forcategorical_crossentropy
loss)."binary"
means that the labels (there can be only 2) are encoded asfloat32
scalars with values 0 or 1 (e.g. forbinary_crossentropy
).NULL
(no labels).
- class_names
Only valid if
labels
is"inferred"
. This is the explicit list of class names (must match names of subdirectories). Used to control the order of the classes (otherwise alphanumerical order is used).- color_mode
One of
"grayscale"
,"rgb"
,"rgba"
. Whether the images will be converted to have 1, 3, or 4 channels. Defaults to"rgb"
.- batch_size
Size of the batches of data. Defaults to 32. If
NULL
, the data will not be batched (the dataset will yield individual samples).- image_size
Size to resize images to after they are read from disk, specified as
(height, width)
. Since the pipeline processes batches of images that must all have the same size, this must be provided. Defaults to(256, 256)
.- shuffle
Whether to shuffle the data. Defaults to
TRUE
. If set toFALSE
, sorts the data in alphanumeric order.- seed
Optional random seed for shuffling and transformations.
- validation_split
Optional float between 0 and 1, fraction of data to reserve for validation.
- subset
Subset of the data to return. One of
"training"
,"validation"
, or"both"
. Only used ifvalidation_split
is set. Whensubset = "both"
, the utility returns a tuple of two datasets (the training and validation datasets respectively).- interpolation
String, the interpolation method used when resizing images. Supports
"bilinear"
,"nearest"
,"bicubic"
,"area"
,"lanczos3"
,"lanczos5"
,"gaussian"
,"mitchellcubic"
. Defaults to"bilinear"
.- follow_links
Whether to visit subdirectories pointed to by symlinks. Defaults to
FALSE
.- crop_to_aspect_ratio
If
TRUE
, resize the images without aspect ratio distortion. When the original aspect ratio differs from the target aspect ratio, the output image will be cropped so as to return the largest possible window in the image (of sizeimage_size
) that matches the target aspect ratio. By default (crop_to_aspect_ratio = FALSE
), aspect ratio may not be preserved.- pad_to_aspect_ratio
If
TRUE
, resize the images without aspect ratio distortion. When the original aspect ratio differs from the target aspect ratio, the output image will be padded so as to return the largest possible window in the image (of sizeimage_size
) that matches the target aspect ratio. By default (pad_to_aspect_ratio=FALSE
), aspect ratio may not be preserved.- data_format
If
NULL
usesconfig_image_data_format()
otherwise either'channel_last'
or'channel_first'
.- verbose
Whether to display number information on classes and number of files found. Defaults to
TRUE
.
Value
A tf.data.Dataset
object.
If
label_mode
isNULL
, it yieldsfloat32
tensors of shape(batch_size, image_size[1], image_size[2], num_channels)
, encoding images (see below for rules regardingnum_channels
).Otherwise, it yields a tuple
(images, labels)
, whereimages
has shape(batch_size, image_size[1], image_size[2], num_channels)
, andlabels
follows the format described below.
Rules regarding labels format:
if
label_mode
is"int"
, the labels are anint32
tensor of shape(batch_size,)
.if
label_mode
is"binary"
, the labels are afloat32
tensor of 1s and 0s of shape(batch_size, 1)
.if
label_mode
is"categorical"
, the labels are afloat32
tensor of shape(batch_size, num_classes)
, representing a one-hot encoding of the class index.
Rules regarding number of channels in the yielded images:
if
color_mode
is"grayscale"
, there's 1 channel in the image tensors.if
color_mode
is"rgb"
, there are 3 channels in the image tensors.if
color_mode
is"rgba"
, there are 4 channels in the image tensors.
See also
Other dataset utils: audio_dataset_from_directory()
split_dataset()
text_dataset_from_directory()
timeseries_dataset_from_array()
Other utils: audio_dataset_from_directory()
clear_session()
config_disable_interactive_logging()
config_disable_traceback_filtering()
config_enable_interactive_logging()
config_enable_traceback_filtering()
config_is_interactive_logging_enabled()
config_is_traceback_filtering_enabled()
get_file()
get_source_inputs()
image_array_save()
image_from_array()
image_load()
image_smart_resize()
image_to_array()
layer_feature_space()
normalize()
pad_sequences()
set_random_seed()
split_dataset()
text_dataset_from_directory()
timeseries_dataset_from_array()
to_categorical()
zip_lists()
Other preprocessing: image_smart_resize()
text_dataset_from_directory()
timeseries_dataset_from_array()