Generates a tf.data.Dataset
from audio files in a directory.
Source: R/dataset-utils.R
audio_dataset_from_directory.Rd
If your directory structure is:
main_directory/
...class_a/
......a_audio_1.wav
......a_audio_2.wav
...class_b/
......b_audio_1.wav
......b_audio_2.wav
Then calling audio_dataset_from_directory(main_directory, labels = 'inferred')
will return a tf.data.Dataset
that yields batches of audio files from
the subdirectories class_a
and class_b
, together with labels
0 and 1 (0 corresponding to class_a
and 1 corresponding to class_b
).
Only .wav
files are supported at this time.
Usage
audio_dataset_from_directory(
directory,
labels = "inferred",
label_mode = "int",
class_names = NULL,
batch_size = 32L,
sampling_rate = NULL,
output_sequence_length = NULL,
ragged = FALSE,
shuffle = TRUE,
seed = NULL,
validation_split = NULL,
subset = NULL,
follow_links = FALSE,
verbose = TRUE
)
Arguments
- directory
Directory where the data is located. If
labels
is"inferred"
, it should contain subdirectories, each containing audio files for a class. Otherwise, the directory structure is ignored.- labels
Either "inferred" (labels are generated from the directory structure),
NULL
(no labels), or a list/tuple of integer labels of the same size as the number of audio files found in the directory. Labels should be sorted according to the alphanumeric order of the audio file paths (obtained viaos.walk(directory)
in Python).- label_mode
String describing the encoding of
labels
. Options are:"int"
: means that the labels are encoded as integers (e.g. forsparse_categorical_crossentropy
loss)."categorical"
means that the labels are encoded as a categorical vector (e.g. forcategorical_crossentropy
loss)"binary"
means that the labels (there can be only 2) are encoded asfloat32
scalars with values 0 or 1 (e.g. forbinary_crossentropy
).NULL
(no labels).
- class_names
Only valid if "labels" is
"inferred"
. This is the explicit list of class names (must match names of subdirectories). Used to control the order of the classes (otherwise alphanumerical order is used).- batch_size
Size of the batches of data. Default: 32. If
NULL
, the data will not be batched (the dataset will yield individual samples).- sampling_rate
Audio sampling rate (in samples per second).
- output_sequence_length
Maximum length of an audio sequence. Audio files longer than this will be truncated to
output_sequence_length
. If set toNULL
, then all sequences in the same batch will be padded to the length of the longest sequence in the batch.- ragged
Whether to return a Ragged dataset (where each sequence has its own length). Defaults to
FALSE
.- shuffle
Whether to shuffle the data. Defaults to
TRUE
. If set toFALSE
, sorts the data in alphanumeric order.- seed
Optional random seed for shuffling and transformations.
- validation_split
Optional float between 0 and 1, fraction of data to reserve for validation.
- subset
Subset of the data to return. One of
"training"
,"validation"
or"both"
. Only used ifvalidation_split
is set.- follow_links
Whether to visits subdirectories pointed to by symlinks. Defaults to
FALSE
.- verbose
Whether to display number information on classes and number of files found. Defaults to
TRUE
.
Value
A tf.data.Dataset
object.
If
label_mode
isNULL
, it yieldsstring
tensors of shape(batch_size,)
, containing the contents of a batch of audio files.Otherwise, it yields a tuple
(audio, labels)
, whereaudio
has shape(batch_size, sequence_length, num_channels)
andlabels
follows the format described below.
Rules regarding labels format:
if
label_mode
isint
, the labels are anint32
tensor of shape(batch_size,)
.if
label_mode
isbinary
, the labels are afloat32
tensor of 1s and 0s of shape(batch_size, 1)
.if
label_mode
iscategorical
, the labels are afloat32
tensor of shape(batch_size, num_classes)
, representing a one-hot encoding of the class index.
See also
Other dataset utils: image_dataset_from_directory()
split_dataset()
text_dataset_from_directory()
timeseries_dataset_from_array()
Other utils: clear_session()
config_disable_interactive_logging()
config_disable_traceback_filtering()
config_enable_interactive_logging()
config_enable_traceback_filtering()
config_is_interactive_logging_enabled()
config_is_traceback_filtering_enabled()
get_file()
get_source_inputs()
image_array_save()
image_dataset_from_directory()
image_from_array()
image_load()
image_smart_resize()
image_to_array()
layer_feature_space()
normalize()
pad_sequences()
set_random_seed()
split_dataset()
text_dataset_from_directory()
timeseries_dataset_from_array()
to_categorical()
zip_lists()