Skip to contents

Available feature types:

Note that all features can be referred to by their string name, e.g. "integer_categorical". When using the string name, the default argument values are used.

# Plain float values.
feature_float(name = NULL)

# Float values to be preprocessed via featurewise standardization
# (i.e. via a `layer_normalization()` layer).
feature_float_normalized(name = NULL)

# Float values to be preprocessed via linear rescaling
# (i.e. via a `layer_rescaling` layer).
feature_float_rescaled(scale = 1., offset = 0., name = NULL)

# Float values to be discretized. By default, the discrete
# representation will then be one-hot encoded.
feature_float_discretized(
  num_bins,
  bin_boundaries = NULL,
  output_mode = "one_hot",
  name = NULL
)

# Integer values to be indexed. By default, the discrete
# representation will then be one-hot encoded.
feature_integer_categorical(
  max_tokens = NULL,
  num_oov_indices = 1,
  output_mode = "one_hot",
  name = NULL
)

# String values to be indexed. By default, the discrete
# representation will then be one-hot encoded.
feature_string_categorical(
  max_tokens = NULL,
  num_oov_indices = 1,
  output_mode = "one_hot",
  name = NULL
)

# Integer values to be hashed into a fixed number of bins.
# By default, the discrete representation will then be one-hot encoded.
feature_integer_hashed(num_bins, output_mode = "one_hot", name = NULL)

# String values to be hashed into a fixed number of bins.
# By default, the discrete representation will then be one-hot encoded.
feature_string_hashed(num_bins, output_mode = "one_hot", name = NULL)

Usage

layer_feature_space(
  object,
  features,
  output_mode = "concat",
  crosses = NULL,
  crossing_dim = 32L,
  hashing_dim = 32L,
  num_discretization_bins = 32L,
  name = NULL,
  feature_names = NULL
)

feature_cross(feature_names, crossing_dim, output_mode = "one_hot")

feature_custom(dtype, preprocessor, output_mode)

feature_float(name = NULL)

feature_float_rescaled(scale = 1, offset = 0, name = NULL)

feature_float_normalized(name = NULL)

feature_float_discretized(
  num_bins,
  bin_boundaries = NULL,
  output_mode = "one_hot",
  name = NULL
)

feature_integer_categorical(
  max_tokens = NULL,
  num_oov_indices = 1,
  output_mode = "one_hot",
  name = NULL
)

feature_string_categorical(
  max_tokens = NULL,
  num_oov_indices = 1,
  output_mode = "one_hot",
  name = NULL
)

feature_string_hashed(num_bins, output_mode = "one_hot", name = NULL)

feature_integer_hashed(num_bins, output_mode = "one_hot", name = NULL)

Arguments

object

see description

features

see description

output_mode

A string.

  • For layer_feature_space(), one of "concat" or "dict". In concat mode, all features get concatenated together into a single vector. In dict mode, the FeatureSpace returns a named list of individually encoded features (with the same names as the input list names).

  • For the feature_* functions, one of: "int" "one_hot" or "float".

crosses

List of features to be crossed together, e.g. crosses=list(c("feature_1", "feature_2")). The features will be "crossed" by hashing their combined value into a fixed-length vector.

crossing_dim

Default vector size for hashing crossed features. Defaults to 32.

hashing_dim

Default vector size for hashing features of type "integer_hashed" and "string_hashed". Defaults to 32.

num_discretization_bins

Default number of bins to be used for discretizing features of type "float_discretized". Defaults to 32.

name

String, name for the object

feature_names

Named list mapping the names of your features to their type specification, e.g. list(my_feature = "integer_categorical") or list(my_feature = feature_integer_categorical()). For a complete list of all supported types, see "Available feature types" paragraph below.

dtype

string, the output dtype of the feature. E.g., "float32".

preprocessor

A callable.

scale, offset

Passed on to layer_rescaling()

num_bins, bin_boundaries

Passed on to layer_discretization()

max_tokens, num_oov_indices

Passed on to layer_integer_lookup() by feature_integer_categorical() or to layer_string_lookup() by feature_string_categorical().

Value

The return value depends on the value provided for the first argument. If object is:

  • a keras_model_sequential(), then the layer is added to the sequential model (which is modified in place). To enable piping, the sequential model is also returned, invisibly.

  • a keras_input(), then the output tensor from calling layer(input) is returned.

  • NULL or missing, then a Layer instance is returned.

Examples

Basic usage with a named list of input data:

raw_data <- list(
  float_values = c(0.0, 0.1, 0.2, 0.3),
  string_values = c("zero", "one", "two", "three"),
  int_values = as.integer(c(0, 1, 2, 3))
)

dataset <- tfdatasets::tensor_slices_dataset(raw_data)

feature_space <- layer_feature_space(
  features = list(
    float_values = "float_normalized",
    string_values = "string_categorical",
    int_values = "integer_categorical"
  ),
  crosses = list(c("string_values", "int_values")),
  output_mode = "concat"
)

# Before you start using the feature_space(),
# you must `adapt()` it on some data.
feature_space |> adapt(dataset)

# You can call the feature_space() on a named list of
# data (batched or unbatched).
output_vector <- feature_space(raw_data)

Basic usage with tf.data:

library(tfdatasets)
# Unlabeled data
preprocessed_ds <- unlabeled_dataset |>
  dataset_map(feature_space)

# Labeled data
preprocessed_ds <- labeled_dataset |>
  dataset_map(function(x, y) tuple(feature_space(x), y))

Basic usage with the Keras Functional API:

# Retrieve a named list of Keras layer_input() objects
(inputs <- feature_space$get_inputs())

## $float_values
## <KerasTensor shape=(None, 1), dtype=float32, sparse=False, name=float_values>
##
## $string_values
## <KerasTensor shape=(None, 1), dtype=string, sparse=False, name=string_values>
##
## $int_values
## <KerasTensor shape=(None, 1), dtype=int32, sparse=False, name=int_values>

# Retrieve the corresponding encoded Keras tensors
(encoded_features <- feature_space$get_encoded_features())

## <KerasTensor shape=(None, 43), dtype=float32, sparse=False, name=keras_tensor_7>

# Build a Functional model
outputs <- encoded_features |> layer_dense(1, activation = "sigmoid")
model <- keras_model(inputs, outputs)

Customizing each feature or feature cross:

feature_space <- layer_feature_space(
  features = list(
    float_values = feature_float_normalized(),
    string_values = feature_string_categorical(max_tokens = 10),
    int_values = feature_integer_categorical(max_tokens = 10)
  ),
  crosses = list(
    feature_cross(c("string_values", "int_values"), crossing_dim = 32)
  ),
  output_mode = "concat"
)

Returning a dict (a named list) of integer-encoded features:

feature_space <- layer_feature_space(
  features = list(
    "string_values" = feature_string_categorical(output_mode = "int"),
    "int_values" = feature_integer_categorical(output_mode = "int")
  ),
  crosses = list(
    feature_cross(
      feature_names = c("string_values", "int_values"),
      crossing_dim = 32,
      output_mode = "int"
    )
  ),
  output_mode = "dict"
)

Specifying your own Keras preprocessing layer:

# Let's say that one of the features is a short text paragraph that
# we want to encode as a vector (one vector per paragraph) via TF-IDF.
data <- list(text = c("1st string", "2nd string", "3rd string"))

# There's a Keras layer for this: layer_text_vectorization()
custom_layer <- layer_text_vectorization(output_mode = "tf_idf")

# We can use feature_custom() to create a custom feature
# that will use our preprocessing layer.
feature_space <- layer_feature_space(
  features = list(
    text = feature_custom(preprocessor = custom_layer,
                          dtype = "string",
                          output_mode = "float"
    )
  ),
  output_mode = "concat"
)
feature_space |> adapt(tfdatasets::tensor_slices_dataset(data))
output_vector <- feature_space(data)

Retrieving the underlying Keras preprocessing layers:

# The preprocessing layer of each feature is available in `$preprocessors`.
preprocessing_layer <- feature_space$preprocessors$feature1

# The crossing layer of each feature cross is available in `$crossers`.
# It's an instance of layer_hashed_crossing()
crossing_layer <- feature_space$crossers[["feature1_X_feature2"]]

Saving and reloading a FeatureSpace:

feature_space$save("featurespace.keras")
reloaded_feature_space <- keras$models$load_model("featurespace.keras")

See also

Other preprocessing layers:
layer_category_encoding()
layer_center_crop()
layer_discretization()
layer_hashed_crossing()
layer_hashing()
layer_integer_lookup()
layer_mel_spectrogram()
layer_normalization()
layer_random_brightness()
layer_random_contrast()
layer_random_crop()
layer_random_flip()
layer_random_rotation()
layer_random_translation()
layer_random_zoom()
layer_rescaling()
layer_resizing()
layer_string_lookup()
layer_text_vectorization()

Other layers:
Layer()
layer_activation()
layer_activation_elu()
layer_activation_leaky_relu()
layer_activation_parametric_relu()
layer_activation_relu()
layer_activation_softmax()
layer_activity_regularization()
layer_add()
layer_additive_attention()
layer_alpha_dropout()
layer_attention()
layer_average()
layer_average_pooling_1d()
layer_average_pooling_2d()
layer_average_pooling_3d()
layer_batch_normalization()
layer_bidirectional()
layer_category_encoding()
layer_center_crop()
layer_concatenate()
layer_conv_1d()
layer_conv_1d_transpose()
layer_conv_2d()
layer_conv_2d_transpose()
layer_conv_3d()
layer_conv_3d_transpose()
layer_conv_lstm_1d()
layer_conv_lstm_2d()
layer_conv_lstm_3d()
layer_cropping_1d()
layer_cropping_2d()
layer_cropping_3d()
layer_dense()
layer_depthwise_conv_1d()
layer_depthwise_conv_2d()
layer_discretization()
layer_dot()
layer_dropout()
layer_einsum_dense()
layer_embedding()
layer_flatten()
layer_flax_module_wrapper()
layer_gaussian_dropout()
layer_gaussian_noise()
layer_global_average_pooling_1d()
layer_global_average_pooling_2d()
layer_global_average_pooling_3d()
layer_global_max_pooling_1d()
layer_global_max_pooling_2d()
layer_global_max_pooling_3d()
layer_group_normalization()
layer_group_query_attention()
layer_gru()
layer_hashed_crossing()
layer_hashing()
layer_identity()
layer_integer_lookup()
layer_jax_model_wrapper()
layer_lambda()
layer_layer_normalization()
layer_lstm()
layer_masking()
layer_max_pooling_1d()
layer_max_pooling_2d()
layer_max_pooling_3d()
layer_maximum()
layer_mel_spectrogram()
layer_minimum()
layer_multi_head_attention()
layer_multiply()
layer_normalization()
layer_permute()
layer_random_brightness()
layer_random_contrast()
layer_random_crop()
layer_random_flip()
layer_random_rotation()
layer_random_translation()
layer_random_zoom()
layer_repeat_vector()
layer_rescaling()
layer_reshape()
layer_resizing()
layer_rnn()
layer_separable_conv_1d()
layer_separable_conv_2d()
layer_simple_rnn()
layer_spatial_dropout_1d()
layer_spatial_dropout_2d()
layer_spatial_dropout_3d()
layer_spectral_normalization()
layer_string_lookup()
layer_subtract()
layer_text_vectorization()
layer_tfsm()
layer_time_distributed()
layer_torch_module_wrapper()
layer_unit_normalization()
layer_upsampling_1d()
layer_upsampling_2d()
layer_upsampling_3d()
layer_zero_padding_1d()
layer_zero_padding_2d()
layer_zero_padding_3d()
rnn_cell_gru()
rnn_cell_lstm()
rnn_cell_simple()
rnn_cells_stack()

Other utils:
audio_dataset_from_directory()
clear_session()
config_disable_interactive_logging()
config_disable_traceback_filtering()
config_enable_interactive_logging()
config_enable_traceback_filtering()
config_is_interactive_logging_enabled()
config_is_traceback_filtering_enabled()
get_file()
get_source_inputs()
image_array_save()
image_dataset_from_directory()
image_from_array()
image_load()
image_smart_resize()
image_to_array()
normalize()
pad_sequences()
set_random_seed()
split_dataset()
text_dataset_from_directory()
timeseries_dataset_from_array()
to_categorical()
zip_lists()