A preprocessing layer which encodes integer features.
Source:R/layers-preprocessing.R
layer_category_encoding.RdThis layer provides options for condensing data into a categorical encoding
when the total number of tokens are known in advance. It accepts integer
values as inputs, and it outputs a dense or sparse representation of those
inputs. For integer inputs where the total number of tokens is not known,
use layer_integer_lookup() instead.
Note: This layer is safe to use inside a tf.data pipeline
(independently of which backend you're using).
Usage
layer_category_encoding(
object,
num_tokens = NULL,
output_mode = "multi_hot",
sparse = FALSE,
...
)Arguments
- object
Object to compose the layer with. A tensor, array, or sequential model.
- num_tokens
The total number of tokens the layer should support. All inputs to the layer must integers in the range
0 <= value < num_tokens, or an error will be thrown.- output_mode
Specification for the output of the layer. Values can be
"one_hot","multi_hot"or"count", configuring the layer as follows: -"one_hot": Encodes each individual element in the input into an array ofnum_tokenssize, containing a 1 at the element index. If the last dimension is size 1, will encode on that dimension. If the last dimension is not size 1, will append a new dimension for the encoded output. -"multi_hot": Encodes each sample in the input into a single array ofnum_tokenssize, containing a 1 for each vocabulary term present in the sample. Treats the last dimension as the sample dimension, if input shape is(..., sample_length), output shape will be(..., num_tokens). -"count": Like"multi_hot", but the int array contains a count of the number of times the token at that index appeared in the sample. For all output modes, currently only output up to rank 2 is supported. Defaults to"multi_hot".- sparse
Whether to return a sparse tensor; for backends that support sparse tensors.
- ...
For forward/backward compatability.
Value
The return value depends on the value provided for the first argument.
If object is:
a
keras_model_sequential(), then the layer is added to the sequential model (which is modified in place). To enable piping, the sequential model is also returned, invisibly.a
keras_input(), then the output tensor from callinglayer(input)is returned.NULLor missing, then aLayerinstance is returned.
Examples
One-hot encoding data
layer <- layer_category_encoding(num_tokens = 4, output_mode = "one_hot")
x <- op_array(c(3, 2, 0, 1), "int32")
layer(x)## tf.Tensor(
## [[0. 0. 0. 1.]
## [0. 0. 1. 0.]
## [1. 0. 0. 0.]
## [0. 1. 0. 0.]], shape=(4, 4), dtype=float32)
Multi-hot encoding data
layer <- layer_category_encoding(num_tokens = 4, output_mode = "multi_hot")
x <- op_array(rbind(c(0, 1),
c(0, 0),
c(1, 2),
c(3, 1)), "int32")
layer(x)## tf.Tensor(
## [[1. 1. 0. 0.]
## [1. 0. 0. 0.]
## [0. 1. 1. 0.]
## [0. 1. 0. 1.]], shape=(4, 4), dtype=float32)
Using weighted inputs in "count" mode
layer <- layer_category_encoding(num_tokens = 4, output_mode = "count")
count_weights <- op_array(rbind(c(.1, .2),
c(.1, .1),
c(.2, .3),
c(.4, .2)))
x <- op_array(rbind(c(0, 1),
c(0, 0),
c(1, 2),
c(3, 1)), "int32")
layer(x, count_weights = count_weights)
# array([[01, 02, 0. , 0. ],
# [02, 0. , 0. , 0. ],
# [0. , 02, 03, 0. ],
# [0. , 02, 0. , 04]]>Call Arguments
inputs: A 1D or 2D tensor of integer inputs.count_weights: A tensor in the same shape asinputsindicating the weight for each sample value when summing up incountmode. Not used in"multi_hot"or"one_hot"modes.
See also
Other categorical features preprocessing layers: layer_hashed_crossing() layer_hashing() layer_integer_lookup() layer_string_lookup()
Other preprocessing layers: layer_aug_mix() layer_auto_contrast() layer_center_crop() layer_cut_mix() layer_discretization() layer_equalization() layer_feature_space() layer_hashed_crossing() layer_hashing() layer_integer_lookup() layer_max_num_bounding_boxes() layer_mel_spectrogram() layer_mix_up() layer_normalization() layer_rand_augment() layer_random_brightness() layer_random_color_degeneration() layer_random_color_jitter() layer_random_contrast() layer_random_crop() layer_random_elastic_transform() layer_random_erasing() layer_random_flip() layer_random_gaussian_blur() layer_random_grayscale() layer_random_hue() layer_random_invert() layer_random_perspective() layer_random_posterization() layer_random_rotation() layer_random_saturation() layer_random_sharpness() layer_random_shear() layer_random_translation() layer_random_zoom() layer_rescaling() layer_resizing() layer_solarization() layer_stft_spectrogram() layer_string_lookup() layer_text_vectorization()
Other layers: Layer() layer_activation() layer_activation_elu() layer_activation_leaky_relu() layer_activation_parametric_relu() layer_activation_relu() layer_activation_softmax() layer_activity_regularization() layer_add() layer_additive_attention() layer_alpha_dropout() layer_attention() layer_aug_mix() layer_auto_contrast() layer_average() layer_average_pooling_1d() layer_average_pooling_2d() layer_average_pooling_3d() layer_batch_normalization() layer_bidirectional() layer_center_crop() layer_concatenate() layer_conv_1d() layer_conv_1d_transpose() layer_conv_2d() layer_conv_2d_transpose() layer_conv_3d() layer_conv_3d_transpose() layer_conv_lstm_1d() layer_conv_lstm_2d() layer_conv_lstm_3d() layer_cropping_1d() layer_cropping_2d() layer_cropping_3d() layer_cut_mix() layer_dense() layer_depthwise_conv_1d() layer_depthwise_conv_2d() layer_discretization() layer_dot() layer_dropout() layer_einsum_dense() layer_embedding() layer_equalization() layer_feature_space() layer_flatten() layer_flax_module_wrapper() layer_gaussian_dropout() layer_gaussian_noise() layer_global_average_pooling_1d() layer_global_average_pooling_2d() layer_global_average_pooling_3d() layer_global_max_pooling_1d() layer_global_max_pooling_2d() layer_global_max_pooling_3d() layer_group_normalization() layer_group_query_attention() layer_gru() layer_hashed_crossing() layer_hashing() layer_identity() layer_integer_lookup() layer_jax_model_wrapper() layer_lambda() layer_layer_normalization() layer_lstm() layer_masking() layer_max_num_bounding_boxes() layer_max_pooling_1d() layer_max_pooling_2d() layer_max_pooling_3d() layer_maximum() layer_mel_spectrogram() layer_minimum() layer_mix_up() layer_multi_head_attention() layer_multiply() layer_normalization() layer_permute() layer_rand_augment() layer_random_brightness() layer_random_color_degeneration() layer_random_color_jitter() layer_random_contrast() layer_random_crop() layer_random_elastic_transform() layer_random_erasing() layer_random_flip() layer_random_gaussian_blur() layer_random_grayscale() layer_random_hue() layer_random_invert() layer_random_perspective() layer_random_posterization() layer_random_rotation() layer_random_saturation() layer_random_sharpness() layer_random_shear() layer_random_translation() layer_random_zoom() layer_repeat_vector() layer_rescaling() layer_reshape() layer_resizing() layer_rms_normalization() layer_rnn() layer_separable_conv_1d() layer_separable_conv_2d() layer_simple_rnn() layer_solarization() layer_spatial_dropout_1d() layer_spatial_dropout_2d() layer_spatial_dropout_3d() layer_spectral_normalization() layer_stft_spectrogram() layer_string_lookup() layer_subtract() layer_text_vectorization() layer_tfsm() layer_time_distributed() layer_torch_module_wrapper() layer_unit_normalization() layer_upsampling_1d() layer_upsampling_2d() layer_upsampling_3d() layer_zero_padding_1d() layer_zero_padding_2d() layer_zero_padding_3d() rnn_cell_gru() rnn_cell_lstm() rnn_cell_simple() rnn_cells_stack()