A preprocessing layer which encodes integer features.
Source:R/layers-preprocessing.R
layer_category_encoding.Rd
This layer provides options for condensing data into a categorical encoding
when the total number of tokens are known in advance. It accepts integer
values as inputs, and it outputs a dense or sparse representation of those
inputs. For integer inputs where the total number of tokens is not known,
use layer_integer_lookup()
instead.
Note: This layer is safe to use inside a tf.data
pipeline
(independently of which backend you're using).
Usage
layer_category_encoding(
object,
num_tokens = NULL,
output_mode = "multi_hot",
sparse = FALSE,
...
)
Arguments
- object
Object to compose the layer with. A tensor, array, or sequential model.
- num_tokens
The total number of tokens the layer should support. All inputs to the layer must integers in the range
0 <= value < num_tokens
, or an error will be thrown.- output_mode
Specification for the output of the layer. Values can be
"one_hot"
,"multi_hot"
or"count"
, configuring the layer as follows: -"one_hot"
: Encodes each individual element in the input into an array ofnum_tokens
size, containing a 1 at the element index. If the last dimension is size 1, will encode on that dimension. If the last dimension is not size 1, will append a new dimension for the encoded output. -"multi_hot"
: Encodes each sample in the input into a single array ofnum_tokens
size, containing a 1 for each vocabulary term present in the sample. Treats the last dimension as the sample dimension, if input shape is(..., sample_length)
, output shape will be(..., num_tokens)
. -"count"
: Like"multi_hot"
, but the int array contains a count of the number of times the token at that index appeared in the sample. For all output modes, currently only output up to rank 2 is supported. Defaults to"multi_hot"
.- sparse
Whether to return a sparse tensor; for backends that support sparse tensors.
- ...
For forward/backward compatability.
Value
The return value depends on the value provided for the first argument.
If object
is:
a
keras_model_sequential()
, then the layer is added to the sequential model (which is modified in place). To enable piping, the sequential model is also returned, invisibly.a
keras_input()
, then the output tensor from callinglayer(input)
is returned.NULL
or missing, then aLayer
instance is returned.
Examples
One-hot encoding data
layer <- layer_category_encoding(num_tokens = 4, output_mode = "one_hot")
x <- op_array(c(3, 2, 0, 1), "int32")
layer(x)
## tf.Tensor(
## [[0. 0. 0. 1.]
## [0. 0. 1. 0.]
## [1. 0. 0. 0.]
## [0. 1. 0. 0.]], shape=(4, 4), dtype=float32)
Multi-hot encoding data
layer <- layer_category_encoding(num_tokens = 4, output_mode = "multi_hot")
x <- op_array(rbind(c(0, 1),
c(0, 0),
c(1, 2),
c(3, 1)), "int32")
layer(x)
## tf.Tensor(
## [[1. 1. 0. 0.]
## [1. 0. 0. 0.]
## [0. 1. 1. 0.]
## [0. 1. 0. 1.]], shape=(4, 4), dtype=float32)
Using weighted inputs in "count"
mode
layer <- layer_category_encoding(num_tokens = 4, output_mode = "count")
count_weights <- op_array(rbind(c(.1, .2),
c(.1, .1),
c(.2, .3),
c(.4, .2)))
x <- op_array(rbind(c(0, 1),
c(0, 0),
c(1, 2),
c(3, 1)), "int32")
layer(x, count_weights = count_weights)
# array([[01, 02, 0. , 0. ],
# [02, 0. , 0. , 0. ],
# [0. , 02, 03, 0. ],
# [0. , 02, 0. , 04]]>
Call Arguments
inputs
: A 1D or 2D tensor of integer inputs.count_weights
: A tensor in the same shape asinputs
indicating the weight for each sample value when summing up incount
mode. Not used in"multi_hot"
or"one_hot"
modes.
See also
Other categorical features preprocessing layers: layer_hashed_crossing()
layer_hashing()
layer_integer_lookup()
layer_string_lookup()
Other preprocessing layers: layer_center_crop()
layer_discretization()
layer_feature_space()
layer_hashed_crossing()
layer_hashing()
layer_integer_lookup()
layer_mel_spectrogram()
layer_normalization()
layer_random_brightness()
layer_random_contrast()
layer_random_crop()
layer_random_flip()
layer_random_rotation()
layer_random_translation()
layer_random_zoom()
layer_rescaling()
layer_resizing()
layer_string_lookup()
layer_text_vectorization()
Other layers: Layer()
layer_activation()
layer_activation_elu()
layer_activation_leaky_relu()
layer_activation_parametric_relu()
layer_activation_relu()
layer_activation_softmax()
layer_activity_regularization()
layer_add()
layer_additive_attention()
layer_alpha_dropout()
layer_attention()
layer_average()
layer_average_pooling_1d()
layer_average_pooling_2d()
layer_average_pooling_3d()
layer_batch_normalization()
layer_bidirectional()
layer_center_crop()
layer_concatenate()
layer_conv_1d()
layer_conv_1d_transpose()
layer_conv_2d()
layer_conv_2d_transpose()
layer_conv_3d()
layer_conv_3d_transpose()
layer_conv_lstm_1d()
layer_conv_lstm_2d()
layer_conv_lstm_3d()
layer_cropping_1d()
layer_cropping_2d()
layer_cropping_3d()
layer_dense()
layer_depthwise_conv_1d()
layer_depthwise_conv_2d()
layer_discretization()
layer_dot()
layer_dropout()
layer_einsum_dense()
layer_embedding()
layer_feature_space()
layer_flatten()
layer_flax_module_wrapper()
layer_gaussian_dropout()
layer_gaussian_noise()
layer_global_average_pooling_1d()
layer_global_average_pooling_2d()
layer_global_average_pooling_3d()
layer_global_max_pooling_1d()
layer_global_max_pooling_2d()
layer_global_max_pooling_3d()
layer_group_normalization()
layer_group_query_attention()
layer_gru()
layer_hashed_crossing()
layer_hashing()
layer_identity()
layer_integer_lookup()
layer_jax_model_wrapper()
layer_lambda()
layer_layer_normalization()
layer_lstm()
layer_masking()
layer_max_pooling_1d()
layer_max_pooling_2d()
layer_max_pooling_3d()
layer_maximum()
layer_mel_spectrogram()
layer_minimum()
layer_multi_head_attention()
layer_multiply()
layer_normalization()
layer_permute()
layer_random_brightness()
layer_random_contrast()
layer_random_crop()
layer_random_flip()
layer_random_rotation()
layer_random_translation()
layer_random_zoom()
layer_repeat_vector()
layer_rescaling()
layer_reshape()
layer_resizing()
layer_rnn()
layer_separable_conv_1d()
layer_separable_conv_2d()
layer_simple_rnn()
layer_spatial_dropout_1d()
layer_spatial_dropout_2d()
layer_spatial_dropout_3d()
layer_spectral_normalization()
layer_string_lookup()
layer_subtract()
layer_text_vectorization()
layer_tfsm()
layer_time_distributed()
layer_torch_module_wrapper()
layer_unit_normalization()
layer_upsampling_1d()
layer_upsampling_2d()
layer_upsampling_3d()
layer_zero_padding_1d()
layer_zero_padding_2d()
layer_zero_padding_3d()
rnn_cell_gru()
rnn_cell_lstm()
rnn_cell_simple()
rnn_cells_stack()