This class processes one step within the whole time sequence input, whereas
layer_simple_rnn()
processes the whole sequence.
Usage
rnn_cell_simple(
units,
activation = "tanh",
use_bias = TRUE,
kernel_initializer = "glorot_uniform",
recurrent_initializer = "orthogonal",
bias_initializer = "zeros",
kernel_regularizer = NULL,
recurrent_regularizer = NULL,
bias_regularizer = NULL,
kernel_constraint = NULL,
recurrent_constraint = NULL,
bias_constraint = NULL,
dropout = 0,
recurrent_dropout = 0,
seed = NULL,
...
)
Arguments
- units
Positive integer, dimensionality of the output space.
- activation
Activation function to use. Default: hyperbolic tangent (
tanh
). If you passNULL
, no activation is applied (ie. "linear" activation:a(x) = x
).- use_bias
Boolean, (default
TRUE
), whether the layer should use a bias vector.- kernel_initializer
Initializer for the
kernel
weights matrix, used for the linear transformation of the inputs. Default:"glorot_uniform"
.- recurrent_initializer
Initializer for the
recurrent_kernel
weights matrix, used for the linear transformation of the recurrent state. Default:"orthogonal"
.- bias_initializer
Initializer for the bias vector. Default:
"zeros"
.- kernel_regularizer
Regularizer function applied to the
kernel
weights matrix. Default:NULL
.- recurrent_regularizer
Regularizer function applied to the
recurrent_kernel
weights matrix. Default:NULL
.- bias_regularizer
Regularizer function applied to the bias vector. Default:
NULL
.- kernel_constraint
Constraint function applied to the
kernel
weights matrix. Default:NULL
.- recurrent_constraint
Constraint function applied to the
recurrent_kernel
weights matrix. Default:NULL
.- bias_constraint
Constraint function applied to the bias vector. Default:
NULL
.- dropout
Float between 0 and 1. Fraction of the units to drop for the linear transformation of the inputs. Default: 0.
- recurrent_dropout
Float between 0 and 1. Fraction of the units to drop for the linear transformation of the recurrent state. Default: 0.
- seed
Random seed for dropout.
- ...
For forward/backward compatability.
Value
A Layer
instance, which is intended to be used with layer_rnn()
.
Call Arguments
sequence
: A 2D tensor, with shape(batch, features)
.states
: A 2D tensor with shape(batch, units)
, which is the state from the previous time step.training
: Python boolean indicating whether the layer should behave in training mode or in inference mode. Only relevant whendropout
orrecurrent_dropout
is used.
Examples
inputs <- random_uniform(c(32, 10, 8))
rnn <- layer_rnn(cell = rnn_cell_simple(units = 4))
output <- rnn(inputs) # The output has shape `(32, 4)`.
rnn <- layer_rnn(
cell = rnn_cell_simple(units = 4),
return_sequences=TRUE,
return_state=TRUE
)
# whole_sequence_output has shape `(32, 10, 4)`.
# final_state has shape `(32, 4)`.
c(whole_sequence_output, final_state) %<-% rnn(inputs)
See also
Other rnn cells: layer_rnn()
rnn_cell_gru()
rnn_cell_lstm()
Other simple rnn layers: layer_simple_rnn()
Other rnn layers: layer_bidirectional()
layer_conv_lstm_1d()
layer_conv_lstm_2d()
layer_conv_lstm_3d()
layer_gru()
layer_lstm()
layer_rnn()
layer_simple_rnn()
layer_time_distributed()
rnn_cell_gru()
rnn_cell_lstm()
rnn_cells_stack()
Other layers: Layer()
layer_activation()
layer_activation_elu()
layer_activation_leaky_relu()
layer_activation_parametric_relu()
layer_activation_relu()
layer_activation_softmax()
layer_activity_regularization()
layer_add()
layer_additive_attention()
layer_alpha_dropout()
layer_attention()
layer_average()
layer_average_pooling_1d()
layer_average_pooling_2d()
layer_average_pooling_3d()
layer_batch_normalization()
layer_bidirectional()
layer_category_encoding()
layer_center_crop()
layer_concatenate()
layer_conv_1d()
layer_conv_1d_transpose()
layer_conv_2d()
layer_conv_2d_transpose()
layer_conv_3d()
layer_conv_3d_transpose()
layer_conv_lstm_1d()
layer_conv_lstm_2d()
layer_conv_lstm_3d()
layer_cropping_1d()
layer_cropping_2d()
layer_cropping_3d()
layer_dense()
layer_depthwise_conv_1d()
layer_depthwise_conv_2d()
layer_discretization()
layer_dot()
layer_dropout()
layer_einsum_dense()
layer_embedding()
layer_feature_space()
layer_flatten()
layer_flax_module_wrapper()
layer_gaussian_dropout()
layer_gaussian_noise()
layer_global_average_pooling_1d()
layer_global_average_pooling_2d()
layer_global_average_pooling_3d()
layer_global_max_pooling_1d()
layer_global_max_pooling_2d()
layer_global_max_pooling_3d()
layer_group_normalization()
layer_group_query_attention()
layer_gru()
layer_hashed_crossing()
layer_hashing()
layer_identity()
layer_integer_lookup()
layer_jax_model_wrapper()
layer_lambda()
layer_layer_normalization()
layer_lstm()
layer_masking()
layer_max_pooling_1d()
layer_max_pooling_2d()
layer_max_pooling_3d()
layer_maximum()
layer_mel_spectrogram()
layer_minimum()
layer_multi_head_attention()
layer_multiply()
layer_normalization()
layer_permute()
layer_random_brightness()
layer_random_contrast()
layer_random_crop()
layer_random_flip()
layer_random_rotation()
layer_random_translation()
layer_random_zoom()
layer_repeat_vector()
layer_rescaling()
layer_reshape()
layer_resizing()
layer_rnn()
layer_separable_conv_1d()
layer_separable_conv_2d()
layer_simple_rnn()
layer_spatial_dropout_1d()
layer_spatial_dropout_2d()
layer_spatial_dropout_3d()
layer_spectral_normalization()
layer_string_lookup()
layer_subtract()
layer_text_vectorization()
layer_tfsm()
layer_time_distributed()
layer_torch_module_wrapper()
layer_unit_normalization()
layer_upsampling_1d()
layer_upsampling_2d()
layer_upsampling_3d()
layer_zero_padding_1d()
layer_zero_padding_2d()
layer_zero_padding_3d()
rnn_cell_gru()
rnn_cell_lstm()
rnn_cells_stack()