The need for transposed convolutions generally arise from the desire to use a transformation going in the opposite direction of a normal convolution, i.e., from something that has the shape of the output of some convolution to something that has the shape of its input while maintaining a connectivity pattern that is compatible with said convolution.
Usage
layer_conv_3d_transpose(
object,
filters,
kernel_size,
strides = list(1L, 1L, 1L),
padding = "valid",
data_format = NULL,
dilation_rate = list(1L, 1L, 1L),
activation = NULL,
use_bias = TRUE,
kernel_initializer = "glorot_uniform",
bias_initializer = "zeros",
kernel_regularizer = NULL,
bias_regularizer = NULL,
activity_regularizer = NULL,
kernel_constraint = NULL,
bias_constraint = NULL,
...
)
Arguments
- object
Object to compose the layer with. A tensor, array, or sequential model.
- filters
int, the dimension of the output space (the number of filters in the transposed convolution).
- kernel_size
int or list of 1 integer, specifying the size of the transposed convolution window.
- strides
int or list of 1 integer, specifying the stride length of the transposed convolution.
strides > 1
is incompatible withdilation_rate > 1
.- padding
string, either
"valid"
or"same"
(case-insensitive)."valid"
means no padding."same"
results in padding evenly to the left/right or up/down of the input. Whenpadding="same"
andstrides=1
, the output has the same size as the input.- data_format
string, either
"channels_last"
or"channels_first"
. The ordering of the dimensions in the inputs."channels_last"
corresponds to inputs with shape(batch_size, spatial_dim1, spatial_dim2, spatial_dim3, channels)
while"channels_first"
corresponds to inputs with shape(batch_size, channels, spatial_dim1, spatial_dim2, spatial_dim3)
. It defaults to theimage_data_format
value found in your Keras config file at~/.keras/keras.json
. If you never set it, then it will be"channels_last"
.- dilation_rate
int or list of 1 integers, specifying the dilation rate to use for dilated transposed convolution.
- activation
Activation function. If
NULL
, no activation is applied.- use_bias
bool, if
TRUE
, bias will be added to the output.- kernel_initializer
Initializer for the convolution kernel. If
NULL
, the default initializer ("glorot_uniform"
) will be used.- bias_initializer
Initializer for the bias vector. If
NULL
, the default initializer ("zeros"
) will be used.- kernel_regularizer
Optional regularizer for the convolution kernel.
- bias_regularizer
Optional regularizer for the bias vector.
- activity_regularizer
Optional regularizer function for the output.
- kernel_constraint
Optional projection function to be applied to the kernel after being updated by an
Optimizer
(e.g. used to implement norm constraints or value constraints for layer weights). The function must take as input the unprojected variable and must return the projected variable (which must have the same shape). Constraints are not safe to use when doing asynchronous distributed training.- bias_constraint
Optional projection function to be applied to the bias after being updated by an
Optimizer
.- ...
For forward/backward compatability.
Input Shape
If
data_format="channels_last"
: 5D tensor with shape:(batch_size, spatial_dim1, spatial_dim2, spatial_dim3, channels)
If
data_format="channels_first"
: 5D tensor with shape:(batch_size, channels, spatial_dim1, spatial_dim2, spatial_dim3)
Output Shape
If
data_format="channels_last"
: 5D tensor with shape:(batch_size, new_spatial_dim1, new_spatial_dim2, new_spatial_dim3, filters)
If
data_format="channels_first"
: 5D tensor with shape:(batch_size, filters, new_spatial_dim1, new_spatial_dim2, new_spatial_dim3)
Example
x <- random_uniform(c(4, 10, 8, 12, 128))
y <- x |> layer_conv_3d_transpose(32, 2, 2, activation = 'relu')
shape(y)
See also
Other convolutional layers: layer_conv_1d()
layer_conv_1d_transpose()
layer_conv_2d()
layer_conv_2d_transpose()
layer_conv_3d()
layer_depthwise_conv_1d()
layer_depthwise_conv_2d()
layer_separable_conv_1d()
layer_separable_conv_2d()
Other layers: Layer()
layer_activation()
layer_activation_elu()
layer_activation_leaky_relu()
layer_activation_parametric_relu()
layer_activation_relu()
layer_activation_softmax()
layer_activity_regularization()
layer_add()
layer_additive_attention()
layer_alpha_dropout()
layer_attention()
layer_average()
layer_average_pooling_1d()
layer_average_pooling_2d()
layer_average_pooling_3d()
layer_batch_normalization()
layer_bidirectional()
layer_category_encoding()
layer_center_crop()
layer_concatenate()
layer_conv_1d()
layer_conv_1d_transpose()
layer_conv_2d()
layer_conv_2d_transpose()
layer_conv_3d()
layer_conv_lstm_1d()
layer_conv_lstm_2d()
layer_conv_lstm_3d()
layer_cropping_1d()
layer_cropping_2d()
layer_cropping_3d()
layer_dense()
layer_depthwise_conv_1d()
layer_depthwise_conv_2d()
layer_discretization()
layer_dot()
layer_dropout()
layer_einsum_dense()
layer_embedding()
layer_feature_space()
layer_flatten()
layer_flax_module_wrapper()
layer_gaussian_dropout()
layer_gaussian_noise()
layer_global_average_pooling_1d()
layer_global_average_pooling_2d()
layer_global_average_pooling_3d()
layer_global_max_pooling_1d()
layer_global_max_pooling_2d()
layer_global_max_pooling_3d()
layer_group_normalization()
layer_group_query_attention()
layer_gru()
layer_hashed_crossing()
layer_hashing()
layer_identity()
layer_integer_lookup()
layer_jax_model_wrapper()
layer_lambda()
layer_layer_normalization()
layer_lstm()
layer_masking()
layer_max_pooling_1d()
layer_max_pooling_2d()
layer_max_pooling_3d()
layer_maximum()
layer_mel_spectrogram()
layer_minimum()
layer_multi_head_attention()
layer_multiply()
layer_normalization()
layer_permute()
layer_random_brightness()
layer_random_contrast()
layer_random_crop()
layer_random_flip()
layer_random_rotation()
layer_random_translation()
layer_random_zoom()
layer_repeat_vector()
layer_rescaling()
layer_reshape()
layer_resizing()
layer_rnn()
layer_separable_conv_1d()
layer_separable_conv_2d()
layer_simple_rnn()
layer_spatial_dropout_1d()
layer_spatial_dropout_2d()
layer_spatial_dropout_3d()
layer_spectral_normalization()
layer_string_lookup()
layer_subtract()
layer_text_vectorization()
layer_tfsm()
layer_time_distributed()
layer_torch_module_wrapper()
layer_unit_normalization()
layer_upsampling_1d()
layer_upsampling_2d()
layer_upsampling_3d()
layer_zero_padding_1d()
layer_zero_padding_2d()
layer_zero_padding_3d()
rnn_cell_gru()
rnn_cell_lstm()
rnn_cell_simple()
rnn_cells_stack()