Fully-connected RNN where the output is to be fed back as the new input.
Source:R/layers-rnn.R
layer_simple_rnn.Rd
Fully-connected RNN where the output is to be fed back as the new input.
Usage
layer_simple_rnn(
object,
units,
activation = "tanh",
use_bias = TRUE,
kernel_initializer = "glorot_uniform",
recurrent_initializer = "orthogonal",
bias_initializer = "zeros",
kernel_regularizer = NULL,
recurrent_regularizer = NULL,
bias_regularizer = NULL,
activity_regularizer = NULL,
kernel_constraint = NULL,
recurrent_constraint = NULL,
bias_constraint = NULL,
dropout = 0,
recurrent_dropout = 0,
return_sequences = FALSE,
return_state = FALSE,
go_backwards = FALSE,
stateful = FALSE,
unroll = FALSE,
seed = NULL,
...
)
Arguments
- object
Object to compose the layer with. A tensor, array, or sequential model.
- units
Positive integer, dimensionality of the output space.
- activation
Activation function to use. Default: hyperbolic tangent (
tanh
). If you pass NULL, no activation is applied (ie. "linear" activation:a(x) = x
).- use_bias
Boolean, (default
TRUE
), whether the layer uses a bias vector.- kernel_initializer
Initializer for the
kernel
weights matrix, used for the linear transformation of the inputs. Default:"glorot_uniform"
.- recurrent_initializer
Initializer for the
recurrent_kernel
weights matrix, used for the linear transformation of the recurrent state. Default:"orthogonal"
.- bias_initializer
Initializer for the bias vector. Default:
"zeros"
.- kernel_regularizer
Regularizer function applied to the
kernel
weights matrix. Default:NULL
.- recurrent_regularizer
Regularizer function applied to the
recurrent_kernel
weights matrix. Default:NULL
.- bias_regularizer
Regularizer function applied to the bias vector. Default:
NULL
.- activity_regularizer
Regularizer function applied to the output of the layer (its "activation"). Default:
NULL
.- kernel_constraint
Constraint function applied to the
kernel
weights matrix. Default:NULL
.- recurrent_constraint
Constraint function applied to the
recurrent_kernel
weights matrix. Default:NULL
.- bias_constraint
Constraint function applied to the bias vector. Default:
NULL
.- dropout
Float between 0 and 1. Fraction of the units to drop for the linear transformation of the inputs. Default: 0.
- recurrent_dropout
Float between 0 and 1. Fraction of the units to drop for the linear transformation of the recurrent state. Default: 0.
- return_sequences
Boolean. Whether to return the last output in the output sequence, or the full sequence. Default:
FALSE
.- return_state
Boolean. Whether to return the last state in addition to the output. Default:
FALSE
.- go_backwards
Boolean (default:
FALSE
). IfTRUE
, process the input sequence backwards and return the reversed sequence.- stateful
Boolean (default:
FALSE
). IfTRUE
, the last state for each sample at index i in a batch will be used as initial state for the sample of index i in the following batch.- unroll
Boolean (default:
FALSE
). IfTRUE
, the network will be unrolled, else a symbolic loop will be used. Unrolling can speed-up a RNN, although it tends to be more memory-intensive. Unrolling is only suitable for short sequences.- seed
Initial seed for the random number generator
- ...
For forward/backward compatability.
Value
The return value depends on the value provided for the first argument.
If object
is:
a
keras_model_sequential()
, then the layer is added to the sequential model (which is modified in place). To enable piping, the sequential model is also returned, invisibly.a
keras_input()
, then the output tensor from callinglayer(input)
is returned.NULL
or missing, then aLayer
instance is returned.
Call Arguments
sequence
: A 3D tensor, with shape[batch, timesteps, feature]
.mask
: Binary tensor of shape[batch, timesteps]
indicating whether a given timestep should be masked. An individualTRUE
entry indicates that the corresponding timestep should be utilized, while aFALSE
entry indicates that the corresponding timestep should be ignored.training
: Python boolean indicating whether the layer should behave in training mode or in inference mode. This argument is passed to the cell when calling it. This is only relevant ifdropout
orrecurrent_dropout
is used.initial_state
: List of initial state tensors to be passed to the first call of the cell.
Examples
inputs <- random_uniform(c(32, 10, 8))
simple_rnn <- layer_simple_rnn(units = 4)
output <- simple_rnn(inputs) # The output has shape `(32, 4)`.
simple_rnn <- layer_simple_rnn(
units = 4, return_sequences=TRUE, return_state=TRUE
)
# whole_sequence_output has shape `(32, 10, 4)`.
# final_state has shape `(32, 4)`.
c(whole_sequence_output, final_state) %<-% simple_rnn(inputs)
See also
Other simple rnn layers: rnn_cell_simple()
Other rnn layers: layer_bidirectional()
layer_conv_lstm_1d()
layer_conv_lstm_2d()
layer_conv_lstm_3d()
layer_gru()
layer_lstm()
layer_rnn()
layer_time_distributed()
rnn_cell_gru()
rnn_cell_lstm()
rnn_cell_simple()
rnn_cells_stack()
Other layers: Layer()
layer_activation()
layer_activation_elu()
layer_activation_leaky_relu()
layer_activation_parametric_relu()
layer_activation_relu()
layer_activation_softmax()
layer_activity_regularization()
layer_add()
layer_additive_attention()
layer_alpha_dropout()
layer_attention()
layer_average()
layer_average_pooling_1d()
layer_average_pooling_2d()
layer_average_pooling_3d()
layer_batch_normalization()
layer_bidirectional()
layer_category_encoding()
layer_center_crop()
layer_concatenate()
layer_conv_1d()
layer_conv_1d_transpose()
layer_conv_2d()
layer_conv_2d_transpose()
layer_conv_3d()
layer_conv_3d_transpose()
layer_conv_lstm_1d()
layer_conv_lstm_2d()
layer_conv_lstm_3d()
layer_cropping_1d()
layer_cropping_2d()
layer_cropping_3d()
layer_dense()
layer_depthwise_conv_1d()
layer_depthwise_conv_2d()
layer_discretization()
layer_dot()
layer_dropout()
layer_einsum_dense()
layer_embedding()
layer_feature_space()
layer_flatten()
layer_flax_module_wrapper()
layer_gaussian_dropout()
layer_gaussian_noise()
layer_global_average_pooling_1d()
layer_global_average_pooling_2d()
layer_global_average_pooling_3d()
layer_global_max_pooling_1d()
layer_global_max_pooling_2d()
layer_global_max_pooling_3d()
layer_group_normalization()
layer_group_query_attention()
layer_gru()
layer_hashed_crossing()
layer_hashing()
layer_identity()
layer_integer_lookup()
layer_jax_model_wrapper()
layer_lambda()
layer_layer_normalization()
layer_lstm()
layer_masking()
layer_max_pooling_1d()
layer_max_pooling_2d()
layer_max_pooling_3d()
layer_maximum()
layer_mel_spectrogram()
layer_minimum()
layer_multi_head_attention()
layer_multiply()
layer_normalization()
layer_permute()
layer_random_brightness()
layer_random_contrast()
layer_random_crop()
layer_random_flip()
layer_random_rotation()
layer_random_translation()
layer_random_zoom()
layer_repeat_vector()
layer_rescaling()
layer_reshape()
layer_resizing()
layer_rnn()
layer_separable_conv_1d()
layer_separable_conv_2d()
layer_spatial_dropout_1d()
layer_spatial_dropout_2d()
layer_spatial_dropout_3d()
layer_spectral_normalization()
layer_string_lookup()
layer_subtract()
layer_text_vectorization()
layer_tfsm()
layer_time_distributed()
layer_torch_module_wrapper()
layer_unit_normalization()
layer_upsampling_1d()
layer_upsampling_2d()
layer_upsampling_3d()
layer_zero_padding_1d()
layer_zero_padding_2d()
layer_zero_padding_3d()
rnn_cell_gru()
rnn_cell_lstm()
rnn_cell_simple()
rnn_cells_stack()