Fully-connected RNN where the output is to be fed back as the new input.
Source:R/layers-rnn.R
layer_simple_rnn.RdFully-connected RNN where the output is to be fed back as the new input.
Usage
layer_simple_rnn(
object,
units,
activation = "tanh",
use_bias = TRUE,
kernel_initializer = "glorot_uniform",
recurrent_initializer = "orthogonal",
bias_initializer = "zeros",
kernel_regularizer = NULL,
recurrent_regularizer = NULL,
bias_regularizer = NULL,
activity_regularizer = NULL,
kernel_constraint = NULL,
recurrent_constraint = NULL,
bias_constraint = NULL,
dropout = 0,
recurrent_dropout = 0,
return_sequences = FALSE,
return_state = FALSE,
go_backwards = FALSE,
stateful = FALSE,
unroll = FALSE,
seed = NULL,
...
)Arguments
- object
Object to compose the layer with. A tensor, array, or sequential model.
- units
Positive integer, dimensionality of the output space.
- activation
Activation function to use. Default: hyperbolic tangent (
tanh). If you pass NULL, no activation is applied (ie. "linear" activation:a(x) = x).- use_bias
Boolean, (default
TRUE), whether the layer uses a bias vector.- kernel_initializer
Initializer for the
kernelweights matrix, used for the linear transformation of the inputs. Default:"glorot_uniform".- recurrent_initializer
Initializer for the
recurrent_kernelweights matrix, used for the linear transformation of the recurrent state. Default:"orthogonal".- bias_initializer
Initializer for the bias vector. Default:
"zeros".- kernel_regularizer
Regularizer function applied to the
kernelweights matrix. Default:NULL.- recurrent_regularizer
Regularizer function applied to the
recurrent_kernelweights matrix. Default:NULL.- bias_regularizer
Regularizer function applied to the bias vector. Default:
NULL.- activity_regularizer
Regularizer function applied to the output of the layer (its "activation"). Default:
NULL.- kernel_constraint
Constraint function applied to the
kernelweights matrix. Default:NULL.- recurrent_constraint
Constraint function applied to the
recurrent_kernelweights matrix. Default:NULL.- bias_constraint
Constraint function applied to the bias vector. Default:
NULL.- dropout
Float between 0 and 1. Fraction of the units to drop for the linear transformation of the inputs. Default: 0.
- recurrent_dropout
Float between 0 and 1. Fraction of the units to drop for the linear transformation of the recurrent state. Default: 0.
- return_sequences
Boolean. Whether to return the last output in the output sequence, or the full sequence. Default:
FALSE.- return_state
Boolean. Whether to return the last state in addition to the output. Default:
FALSE.- go_backwards
Boolean (default:
FALSE). IfTRUE, process the input sequence backwards and return the reversed sequence.- stateful
Boolean (default:
FALSE). IfTRUE, the last state for each sample at index i in a batch will be used as the initial state for the sample of index i in the following batch.- unroll
Boolean (default:
FALSE). IfTRUE, the network will be unrolled, else a symbolic loop will be used. Unrolling can speed-up an RNN, although it tends to be more memory-intensive. Unrolling is only suitable for short sequences.- seed
Initial seed for the random number generator
- ...
For forward/backward compatability.
Value
The return value depends on the value provided for the first argument.
If object is:
a
keras_model_sequential(), then the layer is added to the sequential model (which is modified in place). To enable piping, the sequential model is also returned, invisibly.a
keras_input(), then the output tensor from callinglayer(input)is returned.NULLor missing, then aLayerinstance is returned.
Call Arguments
sequence: A 3D tensor, with shape[batch, timesteps, feature].mask: Binary tensor of shape[batch, timesteps]indicating whether a given timestep should be masked. An individualTRUEentry indicates that the corresponding timestep should be utilized, while aFALSEentry indicates that the corresponding timestep should be ignored.training: Python boolean indicating whether the layer should behave in training mode or in inference mode. This argument is passed to the cell when calling it. This is only relevant ifdropoutorrecurrent_dropoutis used.initial_state: List of initial state tensors to be passed to the first call of the cell.
Examples
inputs <- random_uniform(c(32, 10, 8))
simple_rnn <- layer_simple_rnn(units = 4)
output <- simple_rnn(inputs) # The output has shape `(32, 4)`.
simple_rnn <- layer_simple_rnn(
units = 4, return_sequences=TRUE, return_state=TRUE
)
# whole_sequence_output has shape `(32, 10, 4)`.
# final_state has shape `(32, 4)`.
c(whole_sequence_output, final_state) %<-% simple_rnn(inputs)See also
Other simple rnn layers: rnn_cell_simple()
Other rnn layers: layer_bidirectional() layer_conv_lstm_1d() layer_conv_lstm_2d() layer_conv_lstm_3d() layer_gru() layer_lstm() layer_rnn() layer_time_distributed() rnn_cell_gru() rnn_cell_lstm() rnn_cell_simple() rnn_cells_stack()
Other layers: Layer() layer_activation() layer_activation_elu() layer_activation_leaky_relu() layer_activation_parametric_relu() layer_activation_relu() layer_activation_softmax() layer_activity_regularization() layer_add() layer_additive_attention() layer_alpha_dropout() layer_attention() layer_aug_mix() layer_auto_contrast() layer_average() layer_average_pooling_1d() layer_average_pooling_2d() layer_average_pooling_3d() layer_batch_normalization() layer_bidirectional() layer_category_encoding() layer_center_crop() layer_concatenate() layer_conv_1d() layer_conv_1d_transpose() layer_conv_2d() layer_conv_2d_transpose() layer_conv_3d() layer_conv_3d_transpose() layer_conv_lstm_1d() layer_conv_lstm_2d() layer_conv_lstm_3d() layer_cropping_1d() layer_cropping_2d() layer_cropping_3d() layer_cut_mix() layer_dense() layer_depthwise_conv_1d() layer_depthwise_conv_2d() layer_discretization() layer_dot() layer_dropout() layer_einsum_dense() layer_embedding() layer_equalization() layer_feature_space() layer_flatten() layer_flax_module_wrapper() layer_gaussian_dropout() layer_gaussian_noise() layer_global_average_pooling_1d() layer_global_average_pooling_2d() layer_global_average_pooling_3d() layer_global_max_pooling_1d() layer_global_max_pooling_2d() layer_global_max_pooling_3d() layer_group_normalization() layer_group_query_attention() layer_gru() layer_hashed_crossing() layer_hashing() layer_identity() layer_integer_lookup() layer_jax_model_wrapper() layer_lambda() layer_layer_normalization() layer_lstm() layer_masking() layer_max_num_bounding_boxes() layer_max_pooling_1d() layer_max_pooling_2d() layer_max_pooling_3d() layer_maximum() layer_mel_spectrogram() layer_minimum() layer_mix_up() layer_multi_head_attention() layer_multiply() layer_normalization() layer_permute() layer_rand_augment() layer_random_brightness() layer_random_color_degeneration() layer_random_color_jitter() layer_random_contrast() layer_random_crop() layer_random_elastic_transform() layer_random_erasing() layer_random_flip() layer_random_gaussian_blur() layer_random_grayscale() layer_random_hue() layer_random_invert() layer_random_perspective() layer_random_posterization() layer_random_rotation() layer_random_saturation() layer_random_sharpness() layer_random_shear() layer_random_translation() layer_random_zoom() layer_repeat_vector() layer_rescaling() layer_reshape() layer_resizing() layer_rms_normalization() layer_rnn() layer_separable_conv_1d() layer_separable_conv_2d() layer_solarization() layer_spatial_dropout_1d() layer_spatial_dropout_2d() layer_spatial_dropout_3d() layer_spectral_normalization() layer_stft_spectrogram() layer_string_lookup() layer_subtract() layer_text_vectorization() layer_tfsm() layer_time_distributed() layer_torch_module_wrapper() layer_unit_normalization() layer_upsampling_1d() layer_upsampling_2d() layer_upsampling_3d() layer_zero_padding_1d() layer_zero_padding_2d() layer_zero_padding_3d() rnn_cell_gru() rnn_cell_lstm() rnn_cell_simple() rnn_cells_stack()