Keras Model composed of a linear stack of layers
Source:R/model-creation.R
keras_model_sequential.Rd
Keras Model composed of a linear stack of layers
Usage
keras_model_sequential(
input_shape = NULL,
name = NULL,
...,
input_dtype = NULL,
input_batch_size = NULL,
input_sparse = NULL,
input_batch_shape = NULL,
input_name = NULL,
input_tensor = NULL,
input_optional = FALSE,
trainable = TRUE,
layers = list()
)
Arguments
- input_shape
A shape integer vector, not including the batch size. For instance,
shape=c(32)
indicates that the expected input will be batches of 32-dimensional vectors. Elements of this shape can beNA
;NA
elements represent dimensions where the shape is not known and may vary (e.g. sequence length).- name
Name of model
- ...
additional arguments passed on to
keras.layers.InputLayer
.- input_dtype
The data type expected by the input, as a string (e.g.
"float32"
,"int32"
...)- input_batch_size
Optional static batch size (integer).
- input_sparse
A boolean specifying whether the expected input will be sparse tensors. Note that, if
sparse
isFALSE
, sparse tensors can still be passed into the input - they will be densified with a default value of0
. This feature is only supported with the TensorFlow backend. Defaults toFALSE
.- input_batch_shape
An optional way to specify
batch_size
andinput_shape
as one argument.- input_name
Optional name string for the input layer. Should be unique in a model (do not reuse the same name twice). It will be autogenerated if it isn't provided.
- input_tensor
Optional existing tensor to wrap into the
InputLayer
. If set, the layer will use this tensor rather than creating a new placeholder tensor.- input_optional
Boolean, whether the input is optional or not. An optional input can accept
NULL
values.- trainable
Boolean, whether the model's variables should be trainable. You can also change the trainable status of a model/layer with
freeze_weights()
andunfreeze_weights()
.- layers
List of layers to add to the model.
Note
If input_shape
is omitted, then the model layer
shapes, including the final model output shape, will not be known until
the model is built, either by calling the model with an input tensor/array
like model(input)
, (possibly via fit()
/evaluate()
/predict()
), or by
explicitly calling model$build(input_shape)
.
Examples
model <- keras_model_sequential(input_shape = c(784))
model |>
layer_dense(units = 32) |>
layer_activation('relu') |>
layer_dense(units = 10) |>
layer_activation('softmax')
model |> compile(
optimizer = 'rmsprop',
loss = 'categorical_crossentropy',
metrics = c('accuracy')
)
model
## Model: "sequential"
## +---------------------------------+------------------------+---------------+
## | Layer (type) | Output Shape | Param # |
## +=================================+========================+===============+
## | dense (Dense) | (None, 32) | 25,120 |
## +---------------------------------+------------------------+---------------+
## | activation (Activation) | (None, 32) | 0 |
## +---------------------------------+------------------------+---------------+
## | dense_1 (Dense) | (None, 10) | 330 |
## +---------------------------------+------------------------+---------------+
## | activation_1 (Activation) | (None, 10) | 0 |
## +---------------------------------+------------------------+---------------+
## Total params: 25,450 (99.41 KB)
## Trainable params: 25,450 (99.41 KB)
## Non-trainable params: 0 (0.00 B)
See also
Other model functions: get_config()
get_layer()
keras_model()
pop_layer()
summary.keras.src.models.model.Model()
Other model creation: keras_input()
keras_model()