The generated values follow a uniform distribution in the range
[minval, maxval)
. The lower bound minval
is included in the range,
while the upper bound maxval
is excluded.
dtype
must be a floating point type, the default range is [0, 1)
.
Arguments
- shape
The shape of the random values to generate.
- minval
Float, defaults to 0. Lower bound of the range of random values to generate (inclusive).
- maxval
Float, defaults to 1. Upper bound of the range of random values to generate (exclusive).
- dtype
Optional dtype of the tensor. Only floating point types are supported. If not specified,
config_floatx()
is used, which defaults tofloat32
unless you configured it otherwise (viaconfig_set_floatx(float_dtype)
)- seed
Optional R integer or instance of
random_seed_generator()
. By default, theseed
argument isNULL
, and an internal globalrandom_seed_generator()
is used. Theseed
argument can be used to ensure deterministic (repeatable) random number generation. Note that passing an integer as theseed
value will produce the same random values for each call. To generate different random values for repeated calls, an instance ofrandom_seed_generator()
must be provided as theseed
value.Remark concerning the JAX backend: When tracing functions with the JAX backend the global
random_seed_generator()
is not supported. Therefore, during tracing the default valueseed=NULL
will produce an error, and aseed
argument must be provided.
See also
Other random: random_beta()
random_binomial()
random_categorical()
random_dropout()
random_gamma()
random_integer()
random_normal()
random_seed_generator()
random_shuffle()
random_truncated_normal()