Skip to contents

The generated values follow a uniform distribution in the range [minval, maxval). The lower bound minval is included in the range, while the upper bound maxval is excluded.

dtype must be a floating point type, the default range is [0, 1).

Usage

random_uniform(shape, minval = 0, maxval = 1, dtype = NULL, seed = NULL)

Arguments

shape

The shape of the random values to generate.

minval

Float, defaults to 0. Lower bound of the range of random values to generate (inclusive).

maxval

Float, defaults to 1. Upper bound of the range of random values to generate (exclusive).

dtype

Optional dtype of the tensor. Only floating point types are supported. If not specified, config_floatx() is used, which defaults to float32 unless you configured it otherwise (via config_set_floatx(float_dtype))

seed

Optional R integer or instance of random_seed_generator(). By default, the seed argument is NULL, and an internal global random_seed_generator() is used. The seed argument can be used to ensure deterministic (repeatable) random number generation. Note that passing an integer as the seed value will produce the same random values for each call. To generate different random values for repeated calls, an instance of random_seed_generator() must be provided as the seed value.

Remark concerning the JAX backend: When tracing functions with the JAX backend the global random_seed_generator() is not supported. Therefore, during tracing the default value seed=NULL will produce an error, and a seed argument must be provided.

Value

A tensor of random values.