The values are drawn from a Beta distribution parametrized by alpha and beta.
Arguments
- shape
The shape of the random values to generate.
- alpha
Float or an array of floats representing the first parameter alpha. Must be broadcastable with
betaandshape.- beta
Float or an array of floats representing the second parameter beta. Must be broadcastable with
alphaandshape.- dtype
Optional dtype of the tensor. Only floating point types are supported. If not specified,
config_floatx()is used, which defaults to"float32"unless you configured it otherwise (viaconfig_set_floatx(float_dtype)).- seed
Optional R integer or instance of
random_seed_generator(). By default, theseedargument isNULL, and an internal globalrandom_seed_generator()is used. Theseedargument can be used to ensure deterministic (repeatable) random number generation. Note that passing an integer as theseedvalue will produce the same random values for each call. To generate different random values for repeated calls, an instance ofrandom_seed_generator()must be provided as theseedvalue.Remark concerning the JAX backend: When tracing functions with the JAX backend the global
random_seed_generator()is not supported. Therefore, during tracing the default valueseed=NULLwill produce an error, and aseedargument must be provided.
See also
Other random: random_binomial() random_categorical() random_dropout() random_gamma() random_integer() random_normal() random_seed_generator() random_shuffle() random_truncated_normal() random_uniform()