Dot-product attention layer, a.k.a. Luong-style attention.
Source:R/layers-attention.R
layer_attention.Rd
Inputs are a list with 2 or 3 elements:
A
query
tensor of shape(batch_size, Tq, dim)
.A
value
tensor of shape(batch_size, Tv, dim)
.A optional
key
tensor of shape(batch_size, Tv, dim)
. If none supplied,value
will be used as akey
.
The calculation follows the steps:
Calculate attention scores using
query
andkey
with shape(batch_size, Tq, Tv)
.Use scores to calculate a softmax distribution with shape
(batch_size, Tq, Tv)
.Use the softmax distribution to create a linear combination of
value
with shape(batch_size, Tq, dim)
.
Usage
layer_attention(
object,
use_scale = FALSE,
score_mode = "dot",
dropout = 0,
seed = NULL,
...
)
Arguments
- object
Object to compose the layer with. A tensor, array, or sequential model.
- use_scale
If
TRUE
, will create a scalar variable to scale the attention scores.- score_mode
Function to use to compute attention scores, one of
{"dot", "concat"}
."dot"
refers to the dot product between the query and key vectors."concat"
refers to the hyperbolic tangent of the concatenation of thequery
andkey
vectors.- dropout
Float between 0 and 1. Fraction of the units to drop for the attention scores. Defaults to
0.0
.- seed
An integer to use as random seed incase of
dropout
.- ...
For forward/backward compatability.
Value
The return value depends on the value provided for the first argument.
If object
is:
a
keras_model_sequential()
, then the layer is added to the sequential model (which is modified in place). To enable piping, the sequential model is also returned, invisibly.a
keras_input()
, then the output tensor from callinglayer(input)
is returned.NULL
or missing, then aLayer
instance is returned.
Call Arguments
inputs
: List of the following tensors:query
: Query tensor of shape(batch_size, Tq, dim)
.value
: Value tensor of shape(batch_size, Tv, dim)
.key
: Optional key tensor of shape(batch_size, Tv, dim)
. If not given, will usevalue
for bothkey
andvalue
, which is the most common case.
mask
: List of the following tensors:query_mask
: A boolean mask tensor of shape(batch_size, Tq)
. If given, the output will be zero at the positions wheremask==FALSE
.value_mask
: A boolean mask tensor of shape(batch_size, Tv)
. If given, will apply the mask such that values at positions wheremask==FALSE
do not contribute to the result.
return_attention_scores
: bool, itTRUE
, returns the attention scores (after masking and softmax) as an additional output argument.training
: Python boolean indicating whether the layer should behave in training mode (adding dropout) or in inference mode (no dropout).use_causal_mask
: Boolean. Set toTRUE
for decoder self-attention. Adds a mask such that positioni
cannot attend to positionsj > i
. This prevents the flow of information from the future towards the past. Defaults toFALSE
.
Output
Attention outputs of shape (batch_size, Tq, dim)
.
(Optional) Attention scores after masking and softmax with shape
(batch_size, Tq, Tv)
.
See also
Other attention layers: layer_additive_attention()
layer_group_query_attention()
layer_multi_head_attention()
Other layers: Layer()
layer_activation()
layer_activation_elu()
layer_activation_leaky_relu()
layer_activation_parametric_relu()
layer_activation_relu()
layer_activation_softmax()
layer_activity_regularization()
layer_add()
layer_additive_attention()
layer_alpha_dropout()
layer_average()
layer_average_pooling_1d()
layer_average_pooling_2d()
layer_average_pooling_3d()
layer_batch_normalization()
layer_bidirectional()
layer_category_encoding()
layer_center_crop()
layer_concatenate()
layer_conv_1d()
layer_conv_1d_transpose()
layer_conv_2d()
layer_conv_2d_transpose()
layer_conv_3d()
layer_conv_3d_transpose()
layer_conv_lstm_1d()
layer_conv_lstm_2d()
layer_conv_lstm_3d()
layer_cropping_1d()
layer_cropping_2d()
layer_cropping_3d()
layer_dense()
layer_depthwise_conv_1d()
layer_depthwise_conv_2d()
layer_discretization()
layer_dot()
layer_dropout()
layer_einsum_dense()
layer_embedding()
layer_feature_space()
layer_flatten()
layer_flax_module_wrapper()
layer_gaussian_dropout()
layer_gaussian_noise()
layer_global_average_pooling_1d()
layer_global_average_pooling_2d()
layer_global_average_pooling_3d()
layer_global_max_pooling_1d()
layer_global_max_pooling_2d()
layer_global_max_pooling_3d()
layer_group_normalization()
layer_group_query_attention()
layer_gru()
layer_hashed_crossing()
layer_hashing()
layer_identity()
layer_integer_lookup()
layer_jax_model_wrapper()
layer_lambda()
layer_layer_normalization()
layer_lstm()
layer_masking()
layer_max_pooling_1d()
layer_max_pooling_2d()
layer_max_pooling_3d()
layer_maximum()
layer_mel_spectrogram()
layer_minimum()
layer_multi_head_attention()
layer_multiply()
layer_normalization()
layer_permute()
layer_random_brightness()
layer_random_contrast()
layer_random_crop()
layer_random_flip()
layer_random_rotation()
layer_random_translation()
layer_random_zoom()
layer_repeat_vector()
layer_rescaling()
layer_reshape()
layer_resizing()
layer_rnn()
layer_separable_conv_1d()
layer_separable_conv_2d()
layer_simple_rnn()
layer_spatial_dropout_1d()
layer_spatial_dropout_2d()
layer_spatial_dropout_3d()
layer_spectral_normalization()
layer_string_lookup()
layer_subtract()
layer_text_vectorization()
layer_tfsm()
layer_time_distributed()
layer_torch_module_wrapper()
layer_unit_normalization()
layer_upsampling_1d()
layer_upsampling_2d()
layer_upsampling_3d()
layer_zero_padding_1d()
layer_zero_padding_2d()
layer_zero_padding_3d()
rnn_cell_gru()
rnn_cell_lstm()
rnn_cell_simple()
rnn_cells_stack()