Downsamples the input representation by taking the maximum value over a
spatial window of size pool_size
. The window is shifted by strides
.
The resulting output when using the "valid"
padding option has a shape of:
output_shape = (input_shape - pool_size + 1) / strides)
.
The resulting output shape when using the "same"
padding option is:
output_shape = input_shape / strides
Usage
layer_max_pooling_1d(
object,
pool_size = 2L,
strides = NULL,
padding = "valid",
data_format = NULL,
name = NULL,
...
)
Arguments
- object
Object to compose the layer with. A tensor, array, or sequential model.
- pool_size
int, size of the max pooling window.
- strides
int or
NULL
. Specifies how much the pooling window moves for each pooling step. IfNULL
, it will default topool_size
.- padding
string, either
"valid"
or"same"
(case-insensitive)."valid"
means no padding."same"
results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input.- data_format
string, either
"channels_last"
or"channels_first"
. The ordering of the dimensions in the inputs."channels_last"
corresponds to inputs with shape(batch, steps, features)
while"channels_first"
corresponds to inputs with shape(batch, features, steps)
. It defaults to theimage_data_format
value found in your Keras config file at~/.keras/keras.json
. If you never set it, then it will be"channels_last"
.- name
String, name for the object
- ...
For forward/backward compatability.
Value
The return value depends on the value provided for the first argument.
If object
is:
a
keras_model_sequential()
, then the layer is added to the sequential model (which is modified in place). To enable piping, the sequential model is also returned, invisibly.a
keras_input()
, then the output tensor from callinglayer(input)
is returned.NULL
or missing, then aLayer
instance is returned.
Input Shape
If
data_format="channels_last"
: 3D tensor with shape(batch_size, steps, features)
.If
data_format="channels_first"
: 3D tensor with shape(batch_size, features, steps)
.
Output Shape
If
data_format="channels_last"
: 3D tensor with shape(batch_size, downsampled_steps, features)
.If
data_format="channels_first"
: 3D tensor with shape(batch_size, features, downsampled_steps)
.
Examples
strides=1
and padding="valid"
:
x <- op_reshape(c(1, 2, 3, 4, 5),
c(1, 5, 1))
max_pool_1d <- layer_max_pooling_1d(pool_size = 2,
strides = 1,
padding = "valid")
max_pool_1d(x)
strides=2
and padding="valid"
:
x <- op_reshape(c(1, 2, 3, 4, 5),
c(1, 5, 1))
max_pool_1d <- layer_max_pooling_1d(pool_size = 2,
strides = 2,
padding = "valid")
max_pool_1d(x)
strides=1
and padding="same"
:
x <- op_reshape(c(1, 2, 3, 4, 5),
c(1, 5, 1))
max_pool_1d <- layer_max_pooling_1d(pool_size = 2,
strides = 1,
padding = "same")
max_pool_1d(x)
See also
Other pooling layers: layer_average_pooling_1d()
layer_average_pooling_2d()
layer_average_pooling_3d()
layer_global_average_pooling_1d()
layer_global_average_pooling_2d()
layer_global_average_pooling_3d()
layer_global_max_pooling_1d()
layer_global_max_pooling_2d()
layer_global_max_pooling_3d()
layer_max_pooling_2d()
layer_max_pooling_3d()
Other layers: Layer()
layer_activation()
layer_activation_elu()
layer_activation_leaky_relu()
layer_activation_parametric_relu()
layer_activation_relu()
layer_activation_softmax()
layer_activity_regularization()
layer_add()
layer_additive_attention()
layer_alpha_dropout()
layer_attention()
layer_average()
layer_average_pooling_1d()
layer_average_pooling_2d()
layer_average_pooling_3d()
layer_batch_normalization()
layer_bidirectional()
layer_category_encoding()
layer_center_crop()
layer_concatenate()
layer_conv_1d()
layer_conv_1d_transpose()
layer_conv_2d()
layer_conv_2d_transpose()
layer_conv_3d()
layer_conv_3d_transpose()
layer_conv_lstm_1d()
layer_conv_lstm_2d()
layer_conv_lstm_3d()
layer_cropping_1d()
layer_cropping_2d()
layer_cropping_3d()
layer_dense()
layer_depthwise_conv_1d()
layer_depthwise_conv_2d()
layer_discretization()
layer_dot()
layer_dropout()
layer_einsum_dense()
layer_embedding()
layer_feature_space()
layer_flatten()
layer_flax_module_wrapper()
layer_gaussian_dropout()
layer_gaussian_noise()
layer_global_average_pooling_1d()
layer_global_average_pooling_2d()
layer_global_average_pooling_3d()
layer_global_max_pooling_1d()
layer_global_max_pooling_2d()
layer_global_max_pooling_3d()
layer_group_normalization()
layer_group_query_attention()
layer_gru()
layer_hashed_crossing()
layer_hashing()
layer_identity()
layer_integer_lookup()
layer_jax_model_wrapper()
layer_lambda()
layer_layer_normalization()
layer_lstm()
layer_masking()
layer_max_pooling_2d()
layer_max_pooling_3d()
layer_maximum()
layer_mel_spectrogram()
layer_minimum()
layer_multi_head_attention()
layer_multiply()
layer_normalization()
layer_permute()
layer_random_brightness()
layer_random_contrast()
layer_random_crop()
layer_random_flip()
layer_random_rotation()
layer_random_translation()
layer_random_zoom()
layer_repeat_vector()
layer_rescaling()
layer_reshape()
layer_resizing()
layer_rnn()
layer_separable_conv_1d()
layer_separable_conv_2d()
layer_simple_rnn()
layer_spatial_dropout_1d()
layer_spatial_dropout_2d()
layer_spatial_dropout_3d()
layer_spectral_normalization()
layer_string_lookup()
layer_subtract()
layer_text_vectorization()
layer_tfsm()
layer_time_distributed()
layer_torch_module_wrapper()
layer_unit_normalization()
layer_upsampling_1d()
layer_upsampling_2d()
layer_upsampling_3d()
layer_zero_padding_1d()
layer_zero_padding_2d()
layer_zero_padding_3d()
rnn_cell_gru()
rnn_cell_lstm()
rnn_cell_simple()
rnn_cells_stack()