A preprocessing layer which buckets continuous features by ranges.
Source:R/layers-preprocessing.R
layer_discretization.Rd
This layer will place each element of its input data into one of several contiguous ranges and output an integer index indicating which range each element was placed in.
Note: This layer is safe to use inside a tf.data
pipeline
(independently of which backend you're using).
Usage
layer_discretization(
object,
bin_boundaries = NULL,
num_bins = NULL,
epsilon = 0.01,
output_mode = "int",
sparse = FALSE,
dtype = NULL,
name = NULL
)
Arguments
- object
Object to compose the layer with. A tensor, array, or sequential model.
- bin_boundaries
A list of bin boundaries. The leftmost and rightmost bins will always extend to
-Inf
andInf
, sobin_boundaries = c(0, 1, 2)
generates bins(-Inf, 0)
,[0, 1)
,[1, 2)
, and[2, +Inf)
. If this option is set,adapt()
should not be called.- num_bins
The integer number of bins to compute. If this option is set,
adapt()
should be called to learn the bin boundaries.- epsilon
Error tolerance, typically a small fraction close to zero (e.g. 0.01). Higher values of epsilon increase the quantile approximation, and hence result in more unequal buckets, but could improve performance and resource consumption.
- output_mode
Specification for the output of the layer. Values can be
"int"
,"one_hot"
,"multi_hot"
, or"count"
configuring the layer as follows:"int"
: Return the discretized bin indices directly."one_hot"
: Encodes each individual element in the input into an array the same size asnum_bins
, containing a 1 at the input's bin index. If the last dimension is size 1, will encode on that dimension. If the last dimension is not size 1, will append a new dimension for the encoded output."multi_hot"
: Encodes each sample in the input into a single array the same size asnum_bins
, containing a 1 for each bin index index present in the sample. Treats the last dimension as the sample dimension, if input shape is(..., sample_length)
, output shape will be(..., num_tokens)
."count"
: As"multi_hot"
, but the int array contains a count of the number of times the bin index appeared in the sample. Defaults to"int"
.
- sparse
Boolean. Only applicable to
"one_hot"
,"multi_hot"
, and"count"
output modes. Only supported with TensorFlow backend. IfTRUE
, returns aSparseTensor
instead of a denseTensor
. Defaults toFALSE
.- dtype
datatype (e.g.,
"float32"
).- name
String, name for the object
Value
The return value depends on the value provided for the first argument.
If object
is:
a
keras_model_sequential()
, then the layer is added to the sequential model (which is modified in place). To enable piping, the sequential model is also returned, invisibly.a
keras_input()
, then the output tensor from callinglayer(input)
is returned.NULL
or missing, then aLayer
instance is returned.
Examples
Discretize float values based on provided buckets.
input <- op_array(rbind(c(-1.5, 1, 3.4, 0.5),
c(0, 3, 1.3, 0),
c(-.5, 0, .5, 1),
c(1.5, 2, 2.5, 3)))
output <- input |> layer_discretization(bin_boundaries = c(0, 1, 2))
output
Discretize float values based on a number of buckets to compute.
layer <- layer_discretization(num_bins = 4, epsilon = 0.01)
layer |> adapt(input)
layer(input)
See also
Other numerical features preprocessing layers: layer_normalization()
Other preprocessing layers: layer_category_encoding()
layer_center_crop()
layer_feature_space()
layer_hashed_crossing()
layer_hashing()
layer_integer_lookup()
layer_mel_spectrogram()
layer_normalization()
layer_random_brightness()
layer_random_contrast()
layer_random_crop()
layer_random_flip()
layer_random_rotation()
layer_random_translation()
layer_random_zoom()
layer_rescaling()
layer_resizing()
layer_string_lookup()
layer_text_vectorization()
Other layers: Layer()
layer_activation()
layer_activation_elu()
layer_activation_leaky_relu()
layer_activation_parametric_relu()
layer_activation_relu()
layer_activation_softmax()
layer_activity_regularization()
layer_add()
layer_additive_attention()
layer_alpha_dropout()
layer_attention()
layer_average()
layer_average_pooling_1d()
layer_average_pooling_2d()
layer_average_pooling_3d()
layer_batch_normalization()
layer_bidirectional()
layer_category_encoding()
layer_center_crop()
layer_concatenate()
layer_conv_1d()
layer_conv_1d_transpose()
layer_conv_2d()
layer_conv_2d_transpose()
layer_conv_3d()
layer_conv_3d_transpose()
layer_conv_lstm_1d()
layer_conv_lstm_2d()
layer_conv_lstm_3d()
layer_cropping_1d()
layer_cropping_2d()
layer_cropping_3d()
layer_dense()
layer_depthwise_conv_1d()
layer_depthwise_conv_2d()
layer_dot()
layer_dropout()
layer_einsum_dense()
layer_embedding()
layer_feature_space()
layer_flatten()
layer_flax_module_wrapper()
layer_gaussian_dropout()
layer_gaussian_noise()
layer_global_average_pooling_1d()
layer_global_average_pooling_2d()
layer_global_average_pooling_3d()
layer_global_max_pooling_1d()
layer_global_max_pooling_2d()
layer_global_max_pooling_3d()
layer_group_normalization()
layer_group_query_attention()
layer_gru()
layer_hashed_crossing()
layer_hashing()
layer_identity()
layer_integer_lookup()
layer_jax_model_wrapper()
layer_lambda()
layer_layer_normalization()
layer_lstm()
layer_masking()
layer_max_pooling_1d()
layer_max_pooling_2d()
layer_max_pooling_3d()
layer_maximum()
layer_mel_spectrogram()
layer_minimum()
layer_multi_head_attention()
layer_multiply()
layer_normalization()
layer_permute()
layer_random_brightness()
layer_random_contrast()
layer_random_crop()
layer_random_flip()
layer_random_rotation()
layer_random_translation()
layer_random_zoom()
layer_repeat_vector()
layer_rescaling()
layer_reshape()
layer_resizing()
layer_rnn()
layer_separable_conv_1d()
layer_separable_conv_2d()
layer_simple_rnn()
layer_spatial_dropout_1d()
layer_spatial_dropout_2d()
layer_spatial_dropout_3d()
layer_spectral_normalization()
layer_string_lookup()
layer_subtract()
layer_text_vectorization()
layer_tfsm()
layer_time_distributed()
layer_torch_module_wrapper()
layer_unit_normalization()
layer_upsampling_1d()
layer_upsampling_2d()
layer_upsampling_3d()
layer_zero_padding_1d()
layer_zero_padding_2d()
layer_zero_padding_3d()
rnn_cell_gru()
rnn_cell_lstm()
rnn_cell_simple()
rnn_cells_stack()