This layer resizes an image input to a target height and width. The input
should be a 4D (batched) or 3D (unbatched) tensor in "channels_last"
format. Input pixel values can be of any range
(e.g. [0., 1.)
or [0, 255]
).
Usage
layer_resizing(
object,
height,
width,
interpolation = "bilinear",
crop_to_aspect_ratio = FALSE,
pad_to_aspect_ratio = FALSE,
fill_mode = "constant",
fill_value = 0,
data_format = NULL,
...
)
Arguments
- object
Object to compose the layer with. A tensor, array, or sequential model.
- height
Integer, the height of the output shape.
- width
Integer, the width of the output shape.
- interpolation
String, the interpolation method. Supports
"bilinear"
,"nearest"
,"bicubic"
,"lanczos3"
,"lanczos5"
. Defaults to"bilinear"
.- crop_to_aspect_ratio
If
TRUE
, resize the images without aspect ratio distortion. When the original aspect ratio differs from the target aspect ratio, the output image will be cropped so as to return the largest possible window in the image (of size(height, width)
) that matches the target aspect ratio. By default (crop_to_aspect_ratio=FALSE
), aspect ratio may not be preserved.- pad_to_aspect_ratio
If
TRUE
, pad the images without aspect ratio distortion. When the original aspect ratio differs from the target aspect ratio, the output image will be evenly padded on the short side.- fill_mode
When using
pad_to_aspect_ratio=TRUE
, padded areas are filled according to the given mode. Only"constant"
is supported at this time (fill with constant value, equal tofill_value
).- fill_value
Float. Padding value to use when
pad_to_aspect_ratio=TRUE
.- data_format
string, either
"channels_last"
or"channels_first"
. The ordering of the dimensions in the inputs."channels_last"
corresponds to inputs with shape(batch, height, width, channels)
while"channels_first"
corresponds to inputs with shape(batch, channels, height, width)
. It defaults to theimage_data_format
value found in your Keras config file at~/.keras/keras.json
. If you never set it, then it will be"channels_last"
.- ...
Base layer keyword arguments, such as
name
anddtype
.
Value
The return value depends on the value provided for the first argument.
If object
is:
a
keras_model_sequential()
, then the layer is added to the sequential model (which is modified in place). To enable piping, the sequential model is also returned, invisibly.a
keras_input()
, then the output tensor from callinglayer(input)
is returned.NULL
or missing, then aLayer
instance is returned.
Input Shape
3D (unbatched) or 4D (batched) tensor with shape:
(..., height, width, channels)
, in "channels_last"
format,
or (..., channels, height, width)
, in "channels_first"
format.
Output Shape
3D (unbatched) or 4D (batched) tensor with shape:
(..., target_height, target_width, channels)
,
or (..., channels, target_height, target_width)
,
in "channels_first"
format.
Note: This layer is safe to use inside a tf.data
pipeline
(independently of which backend you're using).
See also
Other image preprocessing layers: layer_center_crop()
layer_rescaling()
Other preprocessing layers: layer_category_encoding()
layer_center_crop()
layer_discretization()
layer_feature_space()
layer_hashed_crossing()
layer_hashing()
layer_integer_lookup()
layer_mel_spectrogram()
layer_normalization()
layer_random_brightness()
layer_random_contrast()
layer_random_crop()
layer_random_flip()
layer_random_rotation()
layer_random_translation()
layer_random_zoom()
layer_rescaling()
layer_string_lookup()
layer_text_vectorization()
Other layers: Layer()
layer_activation()
layer_activation_elu()
layer_activation_leaky_relu()
layer_activation_parametric_relu()
layer_activation_relu()
layer_activation_softmax()
layer_activity_regularization()
layer_add()
layer_additive_attention()
layer_alpha_dropout()
layer_attention()
layer_average()
layer_average_pooling_1d()
layer_average_pooling_2d()
layer_average_pooling_3d()
layer_batch_normalization()
layer_bidirectional()
layer_category_encoding()
layer_center_crop()
layer_concatenate()
layer_conv_1d()
layer_conv_1d_transpose()
layer_conv_2d()
layer_conv_2d_transpose()
layer_conv_3d()
layer_conv_3d_transpose()
layer_conv_lstm_1d()
layer_conv_lstm_2d()
layer_conv_lstm_3d()
layer_cropping_1d()
layer_cropping_2d()
layer_cropping_3d()
layer_dense()
layer_depthwise_conv_1d()
layer_depthwise_conv_2d()
layer_discretization()
layer_dot()
layer_dropout()
layer_einsum_dense()
layer_embedding()
layer_feature_space()
layer_flatten()
layer_flax_module_wrapper()
layer_gaussian_dropout()
layer_gaussian_noise()
layer_global_average_pooling_1d()
layer_global_average_pooling_2d()
layer_global_average_pooling_3d()
layer_global_max_pooling_1d()
layer_global_max_pooling_2d()
layer_global_max_pooling_3d()
layer_group_normalization()
layer_group_query_attention()
layer_gru()
layer_hashed_crossing()
layer_hashing()
layer_identity()
layer_integer_lookup()
layer_jax_model_wrapper()
layer_lambda()
layer_layer_normalization()
layer_lstm()
layer_masking()
layer_max_pooling_1d()
layer_max_pooling_2d()
layer_max_pooling_3d()
layer_maximum()
layer_mel_spectrogram()
layer_minimum()
layer_multi_head_attention()
layer_multiply()
layer_normalization()
layer_permute()
layer_random_brightness()
layer_random_contrast()
layer_random_crop()
layer_random_flip()
layer_random_rotation()
layer_random_translation()
layer_random_zoom()
layer_repeat_vector()
layer_rescaling()
layer_reshape()
layer_rnn()
layer_separable_conv_1d()
layer_separable_conv_2d()
layer_simple_rnn()
layer_spatial_dropout_1d()
layer_spatial_dropout_2d()
layer_spatial_dropout_3d()
layer_spectral_normalization()
layer_string_lookup()
layer_subtract()
layer_text_vectorization()
layer_tfsm()
layer_time_distributed()
layer_torch_module_wrapper()
layer_unit_normalization()
layer_upsampling_1d()
layer_upsampling_2d()
layer_upsampling_3d()
layer_zero_padding_1d()
layer_zero_padding_2d()
layer_zero_padding_3d()
rnn_cell_gru()
rnn_cell_lstm()
rnn_cell_simple()
rnn_cells_stack()