layer_torch_module_wrapper
is a wrapper class that can turn any
torch.nn.Module
into a Keras layer, in particular by making its
parameters trackable by Keras.
layer_torch_module_wrapper()
is only compatible with the PyTorch backend and
cannot be used with the TensorFlow or JAX backends.
Arguments
- object
Object to compose the layer with. A tensor, array, or sequential model.
- module
torch.nn.Module
instance. If it's aLazyModule
instance, then its parameters must be initialized before passing the instance tolayer_torch_module_wrapper
(e.g. by calling it once).- name
The name of the layer (string).
- ...
For forward/backward compatability.
Value
The return value depends on the value provided for the first argument.
If object
is:
a
keras_model_sequential()
, then the layer is added to the sequential model (which is modified in place). To enable piping, the sequential model is also returned, invisibly.a
keras_input()
, then the output tensor from callinglayer(input)
is returned.NULL
or missing, then aLayer
instance is returned.
Example
Here's an example of how the layer_torch_module_wrapper()
can be used with vanilla
PyTorch modules.
# reticulate::py_install(
# packages = c("torch", "torchvision", "torchaudio"),
# envname = "r-keras",
# pip_options = c("--index-url https://download.pytorch.org/whl/cpu")
# )
library(keras3)
use_backend("torch")
torch <- reticulate::import("torch")
nn <- reticulate::import("torch.nn")
nnf <- reticulate::import("torch.nn.functional")
Classifier(keras$Model) \%py_class\% {
initialize <- function(...) {
super$initialize(...)
self$conv1 <- layer_torch_module_wrapper(module = nn$Conv2d(
in_channels = 1L,
out_channels = 32L,
kernel_size = tuple(3L, 3L)
))
self$conv2 <- layer_torch_module_wrapper(module = nn$Conv2d(
in_channels = 32L,
out_channels = 64L,
kernel_size = tuple(3L, 3L)
))
self$pool <- nn$MaxPool2d(kernel_size = tuple(2L, 2L))
self$flatten <- nn$Flatten()
self$dropout <- nn$Dropout(p = 0.5)
self$fc <-
layer_torch_module_wrapper(module = nn$Linear(1600L, 10L))
}
call <- function(inputs) {
x <- nnf$relu(self$conv1(inputs))
x <- self$pool(x)
x <- nnf$relu(self$conv2(x))
x <- self$pool(x)
x <- self$flatten(x)
x <- self$dropout(x)
x <- self$fc(x)
nnf$softmax(x, dim = 1L)
}
}
model <- Classifier()
model$build(shape(1, 28, 28))
cat("Output shape:", format(shape(model(torch$ones(1L, 1L, 28L, 28L)))))
model |> compile(loss = "sparse_categorical_crossentropy",
optimizer = "adam",
metrics = "accuracy")
model |> fit(train_loader, epochs = 5)
See also
Other wrapping layers: layer_flax_module_wrapper()
layer_jax_model_wrapper()
Other layers: Layer()
layer_activation()
layer_activation_elu()
layer_activation_leaky_relu()
layer_activation_parametric_relu()
layer_activation_relu()
layer_activation_softmax()
layer_activity_regularization()
layer_add()
layer_additive_attention()
layer_alpha_dropout()
layer_attention()
layer_average()
layer_average_pooling_1d()
layer_average_pooling_2d()
layer_average_pooling_3d()
layer_batch_normalization()
layer_bidirectional()
layer_category_encoding()
layer_center_crop()
layer_concatenate()
layer_conv_1d()
layer_conv_1d_transpose()
layer_conv_2d()
layer_conv_2d_transpose()
layer_conv_3d()
layer_conv_3d_transpose()
layer_conv_lstm_1d()
layer_conv_lstm_2d()
layer_conv_lstm_3d()
layer_cropping_1d()
layer_cropping_2d()
layer_cropping_3d()
layer_dense()
layer_depthwise_conv_1d()
layer_depthwise_conv_2d()
layer_discretization()
layer_dot()
layer_dropout()
layer_einsum_dense()
layer_embedding()
layer_feature_space()
layer_flatten()
layer_flax_module_wrapper()
layer_gaussian_dropout()
layer_gaussian_noise()
layer_global_average_pooling_1d()
layer_global_average_pooling_2d()
layer_global_average_pooling_3d()
layer_global_max_pooling_1d()
layer_global_max_pooling_2d()
layer_global_max_pooling_3d()
layer_group_normalization()
layer_group_query_attention()
layer_gru()
layer_hashed_crossing()
layer_hashing()
layer_identity()
layer_integer_lookup()
layer_jax_model_wrapper()
layer_lambda()
layer_layer_normalization()
layer_lstm()
layer_masking()
layer_max_pooling_1d()
layer_max_pooling_2d()
layer_max_pooling_3d()
layer_maximum()
layer_mel_spectrogram()
layer_minimum()
layer_multi_head_attention()
layer_multiply()
layer_normalization()
layer_permute()
layer_random_brightness()
layer_random_contrast()
layer_random_crop()
layer_random_flip()
layer_random_rotation()
layer_random_translation()
layer_random_zoom()
layer_repeat_vector()
layer_rescaling()
layer_reshape()
layer_resizing()
layer_rnn()
layer_separable_conv_1d()
layer_separable_conv_2d()
layer_simple_rnn()
layer_spatial_dropout_1d()
layer_spatial_dropout_2d()
layer_spatial_dropout_3d()
layer_spectral_normalization()
layer_string_lookup()
layer_subtract()
layer_text_vectorization()
layer_tfsm()
layer_time_distributed()
layer_unit_normalization()
layer_upsampling_1d()
layer_upsampling_2d()
layer_upsampling_3d()
layer_zero_padding_1d()
layer_zero_padding_2d()
layer_zero_padding_3d()
rnn_cell_gru()
rnn_cell_lstm()
rnn_cell_simple()
rnn_cells_stack()