Skip to contents

This layer will apply random rotations to each image, filling empty space according to fill_mode.

By default, random rotations are only applied during training. At inference time, the layer does nothing. If you need to apply random rotations at inference time, pass training = TRUE when calling the layer.

Input pixel values can be of any range (e.g. [0., 1.) or [0, 255]) and of integer or floating point dtype. By default, the layer will output floats.

Note: This layer is safe to use inside a tf.data pipeline (independently of which backend you're using).

Usage

layer_random_rotation(
  object,
  factor,
  fill_mode = "reflect",
  interpolation = "bilinear",
  seed = NULL,
  fill_value = 0,
  value_range = list(0L, 255L),
  data_format = NULL,
  ...
)

Arguments

object

Object to compose the layer with. A tensor, array, or sequential model.

factor

a float represented as fraction of 2 Pi, or a tuple of size 2 representing lower and upper bound for rotating clockwise and counter-clockwise. A positive values means rotating counter clock-wise, while a negative value means clock-wise. When represented as a single float, this value is used for both the upper and lower bound. For instance, factor=(-0.2, 0.3) results in an output rotation by a random amount in the range [-20% * 2pi, 30% * 2pi]. factor=0.2 results in an output rotating by a random amount in the range [-20% * 2pi, 20% * 2pi].

fill_mode

Points outside the boundaries of the input are filled according to the given mode (one of {"constant", "reflect", "wrap", "nearest"}).

  • reflect: (d c b a | a b c d | d c b a) The input is extended by reflecting about the edge of the last pixel.

  • constant: (k k k k | a b c d | k k k k) The input is extended by filling all values beyond the edge with the same constant value k = 0.

  • wrap: (a b c d | a b c d | a b c d) The input is extended by wrapping around to the opposite edge.

  • nearest: (a a a a | a b c d | d d d d) The input is extended by the nearest pixel.

interpolation

Interpolation mode. Supported values: "nearest", "bilinear".

seed

Integer. Used to create a random seed.

fill_value

a float represents the value to be filled outside the boundaries when fill_mode="constant".

value_range

see description

data_format

see description

...

For forward/backward compatability.

Value

The return value depends on the value provided for the first argument. If object is:

  • a keras_model_sequential(), then the layer is added to the sequential model (which is modified in place). To enable piping, the sequential model is also returned, invisibly.

  • a keras_input(), then the output tensor from calling layer(input) is returned.

  • NULL or missing, then a Layer instance is returned.

Input Shape

3D (unbatched) or 4D (batched) tensor with shape: (..., height, width, channels), in "channels_last" format

Output Shape

3D (unbatched) or 4D (batched) tensor with shape: (..., height, width, channels), in "channels_last" format

See also

Other image augmentation layers:
layer_random_brightness()
layer_random_contrast()
layer_random_crop()
layer_random_flip()
layer_random_translation()
layer_random_zoom()

Other preprocessing layers:
layer_category_encoding()
layer_center_crop()
layer_discretization()
layer_feature_space()
layer_hashed_crossing()
layer_hashing()
layer_integer_lookup()
layer_mel_spectrogram()
layer_normalization()
layer_random_brightness()
layer_random_contrast()
layer_random_crop()
layer_random_flip()
layer_random_translation()
layer_random_zoom()
layer_rescaling()
layer_resizing()
layer_string_lookup()
layer_text_vectorization()

Other layers:
Layer()
layer_activation()
layer_activation_elu()
layer_activation_leaky_relu()
layer_activation_parametric_relu()
layer_activation_relu()
layer_activation_softmax()
layer_activity_regularization()
layer_add()
layer_additive_attention()
layer_alpha_dropout()
layer_attention()
layer_average()
layer_average_pooling_1d()
layer_average_pooling_2d()
layer_average_pooling_3d()
layer_batch_normalization()
layer_bidirectional()
layer_category_encoding()
layer_center_crop()
layer_concatenate()
layer_conv_1d()
layer_conv_1d_transpose()
layer_conv_2d()
layer_conv_2d_transpose()
layer_conv_3d()
layer_conv_3d_transpose()
layer_conv_lstm_1d()
layer_conv_lstm_2d()
layer_conv_lstm_3d()
layer_cropping_1d()
layer_cropping_2d()
layer_cropping_3d()
layer_dense()
layer_depthwise_conv_1d()
layer_depthwise_conv_2d()
layer_discretization()
layer_dot()
layer_dropout()
layer_einsum_dense()
layer_embedding()
layer_feature_space()
layer_flatten()
layer_flax_module_wrapper()
layer_gaussian_dropout()
layer_gaussian_noise()
layer_global_average_pooling_1d()
layer_global_average_pooling_2d()
layer_global_average_pooling_3d()
layer_global_max_pooling_1d()
layer_global_max_pooling_2d()
layer_global_max_pooling_3d()
layer_group_normalization()
layer_group_query_attention()
layer_gru()
layer_hashed_crossing()
layer_hashing()
layer_identity()
layer_integer_lookup()
layer_jax_model_wrapper()
layer_lambda()
layer_layer_normalization()
layer_lstm()
layer_masking()
layer_max_pooling_1d()
layer_max_pooling_2d()
layer_max_pooling_3d()
layer_maximum()
layer_mel_spectrogram()
layer_minimum()
layer_multi_head_attention()
layer_multiply()
layer_normalization()
layer_permute()
layer_random_brightness()
layer_random_contrast()
layer_random_crop()
layer_random_flip()
layer_random_translation()
layer_random_zoom()
layer_repeat_vector()
layer_rescaling()
layer_reshape()
layer_resizing()
layer_rnn()
layer_separable_conv_1d()
layer_separable_conv_2d()
layer_simple_rnn()
layer_spatial_dropout_1d()
layer_spatial_dropout_2d()
layer_spatial_dropout_3d()
layer_spectral_normalization()
layer_string_lookup()
layer_subtract()
layer_text_vectorization()
layer_tfsm()
layer_time_distributed()
layer_torch_module_wrapper()
layer_unit_normalization()
layer_upsampling_1d()
layer_upsampling_2d()
layer_upsampling_3d()
layer_zero_padding_1d()
layer_zero_padding_2d()
layer_zero_padding_3d()
rnn_cell_gru()
rnn_cell_lstm()
rnn_cell_simple()
rnn_cells_stack()