Batch normalization applies a transformation that maintains the mean output close to 0 and the output standard deviation close to 1.
Importantly, batch normalization works differently during training and during inference.
During training (i.e. when using fit()
or when calling the layer/model
with the argument training = TRUE
), the layer normalizes its output using
the mean and standard deviation of the current batch of inputs. That is to
say, for each channel being normalized, the layer returns
gamma * (batch - mean(batch)) / sqrt(var(batch) + epsilon) + beta
, where:
epsilon
is small constant (configurable as part of the constructor arguments)gamma
is a learned scaling factor (initialized as 1), which can be disabled by passingscale = FALSE
to the constructor.beta
is a learned offset factor (initialized as 0), which can be disabled by passingcenter = FALSE
to the constructor.
During inference (i.e. when using evaluate()
or predict()
or when
calling the layer/model with the argument training = FALSE
(which is the
default), the layer normalizes its output using a moving average of the
mean and standard deviation of the batches it has seen during training. That
is to say, it returns
gamma * (batch - self$moving_mean) / sqrt(self$moving_var+epsilon) + beta
.
self$moving_mean
and self$moving_var
are non-trainable variables that
are updated each time the layer in called in training mode, as such:
moving_mean = moving_mean * momentum + mean(batch) * (1 - momentum)
moving_var = moving_var * momentum + var(batch) * (1 - momentum)
As such, the layer will only normalize its inputs during inference after having been trained on data that has similar statistics as the inference data.
About setting layer$trainable <- FALSE
on a BatchNormalization
layer:
The meaning of setting layer$trainable <- FALSE
is to freeze the layer,
i.e. its internal state will not change during training:
its trainable weights will not be updated
during fit()
or train_on_batch()
, and its state updates will not be run.
Usually, this does not necessarily mean that the layer is run in inference
mode (which is normally controlled by the training
argument that can
be passed when calling a layer). "Frozen state" and "inference mode"
are two separate concepts.
However, in the case of the BatchNormalization
layer, setting
trainable <- FALSE
on the layer means that the layer will be
subsequently run in inference mode (meaning that it will use
the moving mean and the moving variance to normalize the current batch,
rather than using the mean and variance of the current batch).
Note that:
Usage
layer_batch_normalization(
object,
axis = -1L,
momentum = 0.99,
epsilon = 0.001,
center = TRUE,
scale = TRUE,
beta_initializer = "zeros",
gamma_initializer = "ones",
moving_mean_initializer = "zeros",
moving_variance_initializer = "ones",
beta_regularizer = NULL,
gamma_regularizer = NULL,
beta_constraint = NULL,
gamma_constraint = NULL,
synchronized = FALSE,
...
)
Arguments
- object
Object to compose the layer with. A tensor, array, or sequential model.
- axis
Integer, the axis that should be normalized (typically the features axis). For instance, after a
Conv2D
layer withdata_format = "channels_first"
, useaxis = 2
.- momentum
Momentum for the moving average.
- epsilon
Small float added to variance to avoid dividing by zero.
- center
If
TRUE
, add offset ofbeta
to normalized tensor. IfFALSE
,beta
is ignored.- scale
If
TRUE
, multiply bygamma
. IfFALSE
,gamma
is not used. When the next layer is linear this can be disabled since the scaling will be done by the next layer.- beta_initializer
Initializer for the beta weight.
- gamma_initializer
Initializer for the gamma weight.
- moving_mean_initializer
Initializer for the moving mean.
- moving_variance_initializer
Initializer for the moving variance.
- beta_regularizer
Optional regularizer for the beta weight.
- gamma_regularizer
Optional regularizer for the gamma weight.
- beta_constraint
Optional constraint for the beta weight.
- gamma_constraint
Optional constraint for the gamma weight.
- synchronized
Only applicable with the TensorFlow backend. If
TRUE
, synchronizes the global batch statistics (mean and variance) for the layer across all devices at each training step in a distributed training strategy. IfFALSE
, each replica uses its own local batch statistics.- ...
Base layer keyword arguments (e.g.
name
anddtype
).
Value
The return value depends on the value provided for the first argument.
If object
is:
a
keras_model_sequential()
, then the layer is added to the sequential model (which is modified in place). To enable piping, the sequential model is also returned, invisibly.a
keras_input()
, then the output tensor from callinglayer(input)
is returned.NULL
or missing, then aLayer
instance is returned.
Call Arguments
inputs
: Input tensor (of any rank).training
: R boolean indicating whether the layer should behave in training mode or in inference mode.training = TRUE
: The layer will normalize its inputs using the mean and variance of the current batch of inputs.training = FALSE
: The layer will normalize its inputs using the mean and variance of its moving statistics, learned during training.
mask
: Binary tensor of shape broadcastable toinputs
tensor, withTRUE
values indicating the positions for which mean and variance should be computed. Masked elements of the current inputs are not taken into account for mean and variance computation during training. Any prior unmasked element values will be taken into account until their momentum expires.
See also
Other normalization layers: layer_group_normalization()
layer_layer_normalization()
layer_spectral_normalization()
layer_unit_normalization()
Other layers: Layer()
layer_activation()
layer_activation_elu()
layer_activation_leaky_relu()
layer_activation_parametric_relu()
layer_activation_relu()
layer_activation_softmax()
layer_activity_regularization()
layer_add()
layer_additive_attention()
layer_alpha_dropout()
layer_attention()
layer_average()
layer_average_pooling_1d()
layer_average_pooling_2d()
layer_average_pooling_3d()
layer_bidirectional()
layer_category_encoding()
layer_center_crop()
layer_concatenate()
layer_conv_1d()
layer_conv_1d_transpose()
layer_conv_2d()
layer_conv_2d_transpose()
layer_conv_3d()
layer_conv_3d_transpose()
layer_conv_lstm_1d()
layer_conv_lstm_2d()
layer_conv_lstm_3d()
layer_cropping_1d()
layer_cropping_2d()
layer_cropping_3d()
layer_dense()
layer_depthwise_conv_1d()
layer_depthwise_conv_2d()
layer_discretization()
layer_dot()
layer_dropout()
layer_einsum_dense()
layer_embedding()
layer_feature_space()
layer_flatten()
layer_flax_module_wrapper()
layer_gaussian_dropout()
layer_gaussian_noise()
layer_global_average_pooling_1d()
layer_global_average_pooling_2d()
layer_global_average_pooling_3d()
layer_global_max_pooling_1d()
layer_global_max_pooling_2d()
layer_global_max_pooling_3d()
layer_group_normalization()
layer_group_query_attention()
layer_gru()
layer_hashed_crossing()
layer_hashing()
layer_identity()
layer_integer_lookup()
layer_jax_model_wrapper()
layer_lambda()
layer_layer_normalization()
layer_lstm()
layer_masking()
layer_max_pooling_1d()
layer_max_pooling_2d()
layer_max_pooling_3d()
layer_maximum()
layer_mel_spectrogram()
layer_minimum()
layer_multi_head_attention()
layer_multiply()
layer_normalization()
layer_permute()
layer_random_brightness()
layer_random_contrast()
layer_random_crop()
layer_random_flip()
layer_random_rotation()
layer_random_translation()
layer_random_zoom()
layer_repeat_vector()
layer_rescaling()
layer_reshape()
layer_resizing()
layer_rnn()
layer_separable_conv_1d()
layer_separable_conv_2d()
layer_simple_rnn()
layer_spatial_dropout_1d()
layer_spatial_dropout_2d()
layer_spatial_dropout_3d()
layer_spectral_normalization()
layer_string_lookup()
layer_subtract()
layer_text_vectorization()
layer_tfsm()
layer_time_distributed()
layer_torch_module_wrapper()
layer_unit_normalization()
layer_upsampling_1d()
layer_upsampling_2d()
layer_upsampling_3d()
layer_zero_padding_1d()
layer_zero_padding_2d()
layer_zero_padding_3d()
rnn_cell_gru()
rnn_cell_lstm()
rnn_cell_simple()
rnn_cells_stack()