Layer normalization layer (Ba et al., 2016).
Source:R/layers-normalization.R
layer_layer_normalization.RdNormalize the activations of the previous layer for each given example in a batch independently, rather than across a batch like Batch Normalization. i.e. applies a transformation that maintains the mean activation within each example close to 0 and the activation standard deviation close to 1.
If scale or center are enabled, the layer will scale the normalized
outputs by broadcasting them with a trainable variable gamma, and center
the outputs by broadcasting with a trainable variable beta. gamma will
default to a ones tensor and beta will default to a zeros tensor, so that
centering and scaling are no-ops before training has begun.
So, with scaling and centering enabled the normalization equations are as follows:
Let the intermediate activations for a mini-batch to be the inputs.
For each sample x in a batch of inputs, we compute the mean and
variance of the sample, normalize each value in the sample
(including a small factor epsilon for numerical stability),
and finally,
transform the normalized output by gamma and beta,
which are learned parameters:
outputs <- inputs |> apply(1, function(x) {
x_normalized <- (x - mean(x)) /
sqrt(var(x) + epsilon)
x_normalized * gamma + beta
})gamma and beta will span the axes of inputs specified in axis, and
this part of the inputs' shape must be fully defined.
For example:
layer <- layer_layer_normalization(axis = c(2, 3, 4))
layer(op_ones(c(5, 20, 30, 40))) |> invisible() # build()
shape(layer$beta)shape(layer$gamma)Note that other implementations of layer normalization may choose to define
gamma and beta over a separate set of axes from the axes being
normalized across. For example, Group Normalization
(Wu et al. 2018) with group size of 1
corresponds to a layer_layer_normalization() that normalizes across height, width,
and channel and has gamma and beta span only the channel dimension.
So, this layer_layer_normalization() implementation will not match a
layer_group_normalization() layer with group size set to 1.
Usage
layer_layer_normalization(
object,
axis = -1L,
epsilon = 0.001,
center = TRUE,
scale = TRUE,
beta_initializer = "zeros",
gamma_initializer = "ones",
beta_regularizer = NULL,
gamma_regularizer = NULL,
beta_constraint = NULL,
gamma_constraint = NULL,
...
)Arguments
- object
Object to compose the layer with. A tensor, array, or sequential model.
- axis
Integer or list. The axis or axes to normalize across. Typically, this is the features axis/axes. The left-out axes are typically the batch axis/axes.
-1is the last dimension in the input. Defaults to-1.- epsilon
Small float added to variance to avoid dividing by zero. Defaults to 1e-3.
- center
If
TRUE, add offset ofbetato normalized tensor. IfFALSE,betais ignored. Defaults toTRUE.- scale
If
TRUE, multiply bygamma. IfFALSE,gammais not used. When the next layer is linear (also e.g.layer_activation_relu()), this can be disabled since the scaling will be done by the next layer. Defaults toTRUE.- beta_initializer
Initializer for the beta weight. Defaults to zeros.
- gamma_initializer
Initializer for the gamma weight. Defaults to ones.
- beta_regularizer
Optional regularizer for the beta weight.
NULLby default.- gamma_regularizer
Optional regularizer for the gamma weight.
NULLby default.- beta_constraint
Optional constraint for the beta weight.
NULLby default.- gamma_constraint
Optional constraint for the gamma weight.
NULLby default.- ...
Base layer keyword arguments (e.g.
nameanddtype).
Value
The return value depends on the value provided for the first argument.
If object is:
a
keras_model_sequential(), then the layer is added to the sequential model (which is modified in place). To enable piping, the sequential model is also returned, invisibly.a
keras_input(), then the output tensor from callinglayer(input)is returned.NULLor missing, then aLayerinstance is returned.
See also
Other normalization layers: layer_batch_normalization() layer_group_normalization() layer_rms_normalization() layer_spectral_normalization() layer_unit_normalization()
Other layers: Layer() layer_activation() layer_activation_elu() layer_activation_leaky_relu() layer_activation_parametric_relu() layer_activation_relu() layer_activation_softmax() layer_activity_regularization() layer_add() layer_additive_attention() layer_alpha_dropout() layer_attention() layer_aug_mix() layer_auto_contrast() layer_average() layer_average_pooling_1d() layer_average_pooling_2d() layer_average_pooling_3d() layer_batch_normalization() layer_bidirectional() layer_category_encoding() layer_center_crop() layer_concatenate() layer_conv_1d() layer_conv_1d_transpose() layer_conv_2d() layer_conv_2d_transpose() layer_conv_3d() layer_conv_3d_transpose() layer_conv_lstm_1d() layer_conv_lstm_2d() layer_conv_lstm_3d() layer_cropping_1d() layer_cropping_2d() layer_cropping_3d() layer_cut_mix() layer_dense() layer_depthwise_conv_1d() layer_depthwise_conv_2d() layer_discretization() layer_dot() layer_dropout() layer_einsum_dense() layer_embedding() layer_equalization() layer_feature_space() layer_flatten() layer_flax_module_wrapper() layer_gaussian_dropout() layer_gaussian_noise() layer_global_average_pooling_1d() layer_global_average_pooling_2d() layer_global_average_pooling_3d() layer_global_max_pooling_1d() layer_global_max_pooling_2d() layer_global_max_pooling_3d() layer_group_normalization() layer_group_query_attention() layer_gru() layer_hashed_crossing() layer_hashing() layer_identity() layer_integer_lookup() layer_jax_model_wrapper() layer_lambda() layer_lstm() layer_masking() layer_max_num_bounding_boxes() layer_max_pooling_1d() layer_max_pooling_2d() layer_max_pooling_3d() layer_maximum() layer_mel_spectrogram() layer_minimum() layer_mix_up() layer_multi_head_attention() layer_multiply() layer_normalization() layer_permute() layer_rand_augment() layer_random_brightness() layer_random_color_degeneration() layer_random_color_jitter() layer_random_contrast() layer_random_crop() layer_random_elastic_transform() layer_random_erasing() layer_random_flip() layer_random_gaussian_blur() layer_random_grayscale() layer_random_hue() layer_random_invert() layer_random_perspective() layer_random_posterization() layer_random_rotation() layer_random_saturation() layer_random_sharpness() layer_random_shear() layer_random_translation() layer_random_zoom() layer_repeat_vector() layer_rescaling() layer_reshape() layer_resizing() layer_rms_normalization() layer_rnn() layer_separable_conv_1d() layer_separable_conv_2d() layer_simple_rnn() layer_solarization() layer_spatial_dropout_1d() layer_spatial_dropout_2d() layer_spatial_dropout_3d() layer_spectral_normalization() layer_stft_spectrogram() layer_string_lookup() layer_subtract() layer_text_vectorization() layer_tfsm() layer_time_distributed() layer_torch_module_wrapper() layer_unit_normalization() layer_upsampling_1d() layer_upsampling_2d() layer_upsampling_3d() layer_zero_padding_1d() layer_zero_padding_2d() layer_zero_padding_3d() rnn_cell_gru() rnn_cell_lstm() rnn_cell_simple() rnn_cells_stack()