A preprocessing layer which crosses features using the "hashing trick".
Source:R/layers-preprocessing.R
layer_hashed_crossing.Rd
This layer performs crosses of categorical features using the "hashing
trick". Conceptually, the transformation can be thought of as:
hash(concatenate(features)) %% num_bins
.
This layer currently only performs crosses of scalar inputs and batches of
scalar inputs. Valid input shapes are (batch_size, 1)
, (batch_size)
and
()
.
Note: This layer wraps tf.keras.layers.HashedCrossing
. It cannot
be used as part of the compiled computation graph of a model with
any backend other than TensorFlow.
It can however be used with any backend when running eagerly.
It can also always be used as part of an input preprocessing pipeline
with any backend (outside the model itself), which is how we recommend
to use this layer.
Note: This layer is safe to use inside a tfdatasets
pipeline
(independently of which backend you're using).
Usage
layer_hashed_crossing(
object,
num_bins,
output_mode = "int",
sparse = FALSE,
name = NULL,
dtype = NULL,
...
)
Arguments
- object
Object to compose the layer with. A tensor, array, or sequential model.
- num_bins
Number of hash bins.
- output_mode
Specification for the output of the layer. Values can be
"int"
, or"one_hot"
configuring the layer as follows:"int"
: Return the integer bin indices directly."one_hot"
: Encodes each individual element in the input into an array the same size asnum_bins
, containing a 1 at the input's bin index. Defaults to"int"
.
- sparse
Boolean. Only applicable to
"one_hot"
mode and only valid when using the TensorFlow backend. IfTRUE
, returns aSparseTensor
instead of a denseTensor
. Defaults toFALSE
.- name
String, name for the object
- dtype
datatype (e.g.,
"float32"
).- ...
Keyword arguments to construct a layer.
Value
The return value depends on the value provided for the first argument.
If object
is:
a
keras_model_sequential()
, then the layer is added to the sequential model (which is modified in place). To enable piping, the sequential model is also returned, invisibly.a
keras_input()
, then the output tensor from callinglayer(input)
is returned.NULL
or missing, then aLayer
instance is returned.
Examples
feat1 <- c('A', 'B', 'A', 'B', 'A') |> as.array()
feat2 <- c(101, 101, 101, 102, 102) |> as.integer() |> as.array()
Crossing two scalar features.
layer <- layer_hashed_crossing(num_bins = 5)
layer(list(feat1, feat2))
Crossing and one-hotting two scalar features.
layer <- layer_hashed_crossing(num_bins = 5, output_mode = 'one_hot')
layer(list(feat1, feat2))
See also
Other categorical features preprocessing layers: layer_category_encoding()
layer_hashing()
layer_integer_lookup()
layer_string_lookup()
Other preprocessing layers: layer_category_encoding()
layer_center_crop()
layer_discretization()
layer_feature_space()
layer_hashing()
layer_integer_lookup()
layer_mel_spectrogram()
layer_normalization()
layer_random_brightness()
layer_random_contrast()
layer_random_crop()
layer_random_flip()
layer_random_rotation()
layer_random_translation()
layer_random_zoom()
layer_rescaling()
layer_resizing()
layer_string_lookup()
layer_text_vectorization()
Other layers: Layer()
layer_activation()
layer_activation_elu()
layer_activation_leaky_relu()
layer_activation_parametric_relu()
layer_activation_relu()
layer_activation_softmax()
layer_activity_regularization()
layer_add()
layer_additive_attention()
layer_alpha_dropout()
layer_attention()
layer_average()
layer_average_pooling_1d()
layer_average_pooling_2d()
layer_average_pooling_3d()
layer_batch_normalization()
layer_bidirectional()
layer_category_encoding()
layer_center_crop()
layer_concatenate()
layer_conv_1d()
layer_conv_1d_transpose()
layer_conv_2d()
layer_conv_2d_transpose()
layer_conv_3d()
layer_conv_3d_transpose()
layer_conv_lstm_1d()
layer_conv_lstm_2d()
layer_conv_lstm_3d()
layer_cropping_1d()
layer_cropping_2d()
layer_cropping_3d()
layer_dense()
layer_depthwise_conv_1d()
layer_depthwise_conv_2d()
layer_discretization()
layer_dot()
layer_dropout()
layer_einsum_dense()
layer_embedding()
layer_feature_space()
layer_flatten()
layer_flax_module_wrapper()
layer_gaussian_dropout()
layer_gaussian_noise()
layer_global_average_pooling_1d()
layer_global_average_pooling_2d()
layer_global_average_pooling_3d()
layer_global_max_pooling_1d()
layer_global_max_pooling_2d()
layer_global_max_pooling_3d()
layer_group_normalization()
layer_group_query_attention()
layer_gru()
layer_hashing()
layer_identity()
layer_integer_lookup()
layer_jax_model_wrapper()
layer_lambda()
layer_layer_normalization()
layer_lstm()
layer_masking()
layer_max_pooling_1d()
layer_max_pooling_2d()
layer_max_pooling_3d()
layer_maximum()
layer_mel_spectrogram()
layer_minimum()
layer_multi_head_attention()
layer_multiply()
layer_normalization()
layer_permute()
layer_random_brightness()
layer_random_contrast()
layer_random_crop()
layer_random_flip()
layer_random_rotation()
layer_random_translation()
layer_random_zoom()
layer_repeat_vector()
layer_rescaling()
layer_reshape()
layer_resizing()
layer_rnn()
layer_separable_conv_1d()
layer_separable_conv_2d()
layer_simple_rnn()
layer_spatial_dropout_1d()
layer_spatial_dropout_2d()
layer_spatial_dropout_3d()
layer_spectral_normalization()
layer_string_lookup()
layer_subtract()
layer_text_vectorization()
layer_tfsm()
layer_time_distributed()
layer_torch_module_wrapper()
layer_unit_normalization()
layer_upsampling_1d()
layer_upsampling_2d()
layer_upsampling_3d()
layer_zero_padding_1d()
layer_zero_padding_2d()
layer_zero_padding_3d()
rnn_cell_gru()
rnn_cell_lstm()
rnn_cell_simple()
rnn_cells_stack()