A preprocessing layer which randomly crops images during training.
Source:R/layers-preprocessing.R
      layer_random_crop.RdDuring training, this layer will randomly choose a location to crop images down to a target size. The layer will crop all the images in the same batch to the same cropping location.
At inference time, and during training if an input image is smaller than the
target size, the input will be resized and cropped so as to return the
largest possible window in the image that matches the target aspect ratio.
If you need to apply random cropping at inference time, set training to
TRUE when calling the layer.
Input pixel values can be of any range (e.g. [0., 1.) or [0, 255]) and
of integer or floating point dtype. By default, the layer will output
floats.
Note: This layer is safe to use inside a tf.data pipeline
(independently of which backend you're using).
Arguments
- object
- Object to compose the layer with. A tensor, array, or sequential model. 
- height
- Integer, the height of the output shape. 
- width
- Integer, the width of the output shape. 
- seed
- Integer. Used to create a random seed. 
- data_format
- string, either - "channels_last"or- "channels_first". The ordering of the dimensions in the inputs.- "channels_last"corresponds to inputs with shape- (batch, height, width, channels)while- "channels_first"corresponds to inputs with shape- (batch, channels, height, width). It defaults to the- image_data_formatvalue found in your Keras config file at- ~/.keras/keras.json. If you never set it, then it will be- "channels_last".
- name
- String, name for the object 
- ...
- Base layer keyword arguments, such as - nameand- dtype.
Value
The return value depends on the value provided for the first argument.
If  object is:
- a - keras_model_sequential(), then the layer is added to the sequential model (which is modified in place). To enable piping, the sequential model is also returned, invisibly.
- a - keras_input(), then the output tensor from calling- layer(input)is returned.
- NULLor missing, then a- Layerinstance is returned.
Input Shape
3D (unbatched) or 4D (batched) tensor with shape:
(..., height, width, channels), in "channels_last" format.
Output Shape
3D (unbatched) or 4D (batched) tensor with shape:
(..., target_height, target_width, channels).
See also
Other image augmentation layers: layer_random_brightness() layer_random_contrast() layer_random_flip() layer_random_rotation() layer_random_translation() layer_random_zoom() 
Other preprocessing layers: layer_aug_mix() layer_auto_contrast() layer_category_encoding() layer_center_crop() layer_cut_mix() layer_discretization() layer_equalization() layer_feature_space() layer_hashed_crossing() layer_hashing() layer_integer_lookup() layer_max_num_bounding_boxes() layer_mel_spectrogram() layer_mix_up() layer_normalization() layer_rand_augment() layer_random_brightness() layer_random_color_degeneration() layer_random_color_jitter() layer_random_contrast() layer_random_elastic_transform() layer_random_erasing() layer_random_flip() layer_random_gaussian_blur() layer_random_grayscale() layer_random_hue() layer_random_invert() layer_random_perspective() layer_random_posterization() layer_random_rotation() layer_random_saturation() layer_random_sharpness() layer_random_shear() layer_random_translation() layer_random_zoom() layer_rescaling() layer_resizing() layer_solarization() layer_stft_spectrogram() layer_string_lookup() layer_text_vectorization() 
Other layers: Layer() layer_activation() layer_activation_elu() layer_activation_leaky_relu() layer_activation_parametric_relu() layer_activation_relu() layer_activation_softmax() layer_activity_regularization() layer_add() layer_additive_attention() layer_alpha_dropout() layer_attention() layer_aug_mix() layer_auto_contrast() layer_average() layer_average_pooling_1d() layer_average_pooling_2d() layer_average_pooling_3d() layer_batch_normalization() layer_bidirectional() layer_category_encoding() layer_center_crop() layer_concatenate() layer_conv_1d() layer_conv_1d_transpose() layer_conv_2d() layer_conv_2d_transpose() layer_conv_3d() layer_conv_3d_transpose() layer_conv_lstm_1d() layer_conv_lstm_2d() layer_conv_lstm_3d() layer_cropping_1d() layer_cropping_2d() layer_cropping_3d() layer_cut_mix() layer_dense() layer_depthwise_conv_1d() layer_depthwise_conv_2d() layer_discretization() layer_dot() layer_dropout() layer_einsum_dense() layer_embedding() layer_equalization() layer_feature_space() layer_flatten() layer_flax_module_wrapper() layer_gaussian_dropout() layer_gaussian_noise() layer_global_average_pooling_1d() layer_global_average_pooling_2d() layer_global_average_pooling_3d() layer_global_max_pooling_1d() layer_global_max_pooling_2d() layer_global_max_pooling_3d() layer_group_normalization() layer_group_query_attention() layer_gru() layer_hashed_crossing() layer_hashing() layer_identity() layer_integer_lookup() layer_jax_model_wrapper() layer_lambda() layer_layer_normalization() layer_lstm() layer_masking() layer_max_num_bounding_boxes() layer_max_pooling_1d() layer_max_pooling_2d() layer_max_pooling_3d() layer_maximum() layer_mel_spectrogram() layer_minimum() layer_mix_up() layer_multi_head_attention() layer_multiply() layer_normalization() layer_permute() layer_rand_augment() layer_random_brightness() layer_random_color_degeneration() layer_random_color_jitter() layer_random_contrast() layer_random_elastic_transform() layer_random_erasing() layer_random_flip() layer_random_gaussian_blur() layer_random_grayscale() layer_random_hue() layer_random_invert() layer_random_perspective() layer_random_posterization() layer_random_rotation() layer_random_saturation() layer_random_sharpness() layer_random_shear() layer_random_translation() layer_random_zoom() layer_repeat_vector() layer_rescaling() layer_reshape() layer_resizing() layer_rms_normalization() layer_rnn() layer_separable_conv_1d() layer_separable_conv_2d() layer_simple_rnn() layer_solarization() layer_spatial_dropout_1d() layer_spatial_dropout_2d() layer_spatial_dropout_3d() layer_spectral_normalization() layer_stft_spectrogram() layer_string_lookup() layer_subtract() layer_text_vectorization() layer_tfsm() layer_time_distributed() layer_torch_module_wrapper() layer_unit_normalization() layer_upsampling_1d() layer_upsampling_2d() layer_upsampling_3d() layer_zero_padding_1d() layer_zero_padding_2d() layer_zero_padding_3d() rnn_cell_gru() rnn_cell_lstm() rnn_cell_simple() rnn_cells_stack()