E.g. for use with loss_categorical_crossentropy()
.
Examples
a <- to_categorical(c(0, 1, 2, 3), num_classes=4)
print(a)
b <- array(c(.9, .04, .03, .03,
.3, .45, .15, .13,
.04, .01, .94, .05,
.12, .21, .5, .17),
dim = c(4, 4))
loss <- op_categorical_crossentropy(a, b)
loss
loss <- op_categorical_crossentropy(a, a)
loss
See also
op_one_hot()
, which does the same operation asto_categorical()
, but operating on tensors.loss_sparse_categorical_crossentropy()
, which can accept labels (y_true
) as an integer vector, instead of as a dense one-hot matrix.https://keras.io/api/utils/python_utils#tocategorical-function
Other numerical utils: normalize()
Other utils: audio_dataset_from_directory()
clear_session()
config_disable_interactive_logging()
config_disable_traceback_filtering()
config_enable_interactive_logging()
config_enable_traceback_filtering()
config_is_interactive_logging_enabled()
config_is_traceback_filtering_enabled()
get_file()
get_source_inputs()
image_array_save()
image_dataset_from_directory()
image_from_array()
image_load()
image_smart_resize()
image_to_array()
layer_feature_space()
normalize()
pad_sequences()
set_random_seed()
split_dataset()
text_dataset_from_directory()
timeseries_dataset_from_array()
zip_lists()