Computes the crossentropy loss between the labels and predictions.
Source:R/losses.R
loss_sparse_categorical_crossentropy.Rd
Use this crossentropy loss function when there are two or more label
classes. We expect labels to be provided as integers. If you want to
provide labels using one-hot
representation, please use
CategoricalCrossentropy
loss. There should be # classes
floating point
values per feature for y_pred
and a single floating point value per
feature for y_true
.
In the snippet below, there is a single floating point value per example for
y_true
and num_classes
floating pointing values per example for
y_pred
. The shape of y_true
is [batch_size]
and the shape of y_pred
is [batch_size, num_classes]
.
Usage
loss_sparse_categorical_crossentropy(
y_true,
y_pred,
from_logits = FALSE,
ignore_class = NULL,
axis = -1L,
...,
reduction = "sum_over_batch_size",
name = "sparse_categorical_crossentropy",
dtype = NULL
)
Arguments
- y_true
Ground truth values.
- y_pred
The predicted values.
- from_logits
Whether
y_pred
is expected to be a logits tensor. By default, we assume thaty_pred
encodes a probability distribution.- ignore_class
Optional integer. The ID of a class to be ignored during loss computation. This is useful, for example, in segmentation problems featuring a "void" class (commonly -1 or 255) in segmentation maps. By default (
ignore_class=NULL
), all classes are considered.- axis
Defaults to
-1
. The dimension along which the entropy is computed.- ...
For forward/backward compatability.
- reduction
Type of reduction to apply to the loss. In almost all cases this should be
"sum_over_batch_size"
. Supported options are"sum"
,"sum_over_batch_size"
orNULL
.- name
Optional name for the loss instance.
- dtype
The dtype of the loss's computations. Defaults to
NULL
, which means usingconfig_floatx()
.config_floatx()
is a"float32"
unless set to different value (viaconfig_set_floatx()
). If akeras$DTypePolicy
is provided, then thecompute_dtype
will be utilized.
Examples
y_true <- c(1, 2)
y_pred <- rbind(c(0.05, 0.95, 0), c(0.1, 0.8, 0.1))
loss <- loss_sparse_categorical_crossentropy(y_true, y_pred)
loss
y_true <- c(1, 2)
y_pred <- rbind(c(0.05, 0.95, 0), c(0.1, 0.8, 0.1))
# Using 'auto'/'sum_over_batch_size' reduction type.
scce <- loss_sparse_categorical_crossentropy()
scce(op_array(y_true), op_array(y_pred))
# 1.177
# Calling with 'sample_weight'.
scce(op_array(y_true), op_array(y_pred), sample_weight = op_array(c(0.3, 0.7)))
# Using 'sum' reduction type.
scce <- loss_sparse_categorical_crossentropy(reduction="sum")
scce(op_array(y_true), op_array(y_pred))
# 2.354
# Using 'none' reduction type.
scce <- loss_sparse_categorical_crossentropy(reduction=NULL)
scce(op_array(y_true), op_array(y_pred))
# array([0.0513, 2.303], dtype=float32)
Usage with the compile()
API:
model %>% compile(optimizer = 'sgd',
loss = loss_sparse_categorical_crossentropy())
See also
Other losses: Loss()
loss_binary_crossentropy()
loss_binary_focal_crossentropy()
loss_categorical_crossentropy()
loss_categorical_focal_crossentropy()
loss_categorical_hinge()
loss_cosine_similarity()
loss_ctc()
loss_dice()
loss_hinge()
loss_huber()
loss_kl_divergence()
loss_log_cosh()
loss_mean_absolute_error()
loss_mean_absolute_percentage_error()
loss_mean_squared_error()
loss_mean_squared_logarithmic_error()
loss_poisson()
loss_squared_hinge()
loss_tversky()
metric_binary_crossentropy()
metric_binary_focal_crossentropy()
metric_categorical_crossentropy()
metric_categorical_focal_crossentropy()
metric_categorical_hinge()
metric_hinge()
metric_huber()
metric_kl_divergence()
metric_log_cosh()
metric_mean_absolute_error()
metric_mean_absolute_percentage_error()
metric_mean_squared_error()
metric_mean_squared_logarithmic_error()
metric_poisson()
metric_sparse_categorical_crossentropy()
metric_squared_hinge()