Computes the cosine similarity between y_true
& y_pred
.
Source: R/losses.R
loss_cosine_similarity.Rd
Formula:
loss <- -sum(l2_norm(y_true) * l2_norm(y_pred))
Note that it is a number between -1 and 1. When it is a negative number
between -1 and 0, 0 indicates orthogonality and values closer to -1
indicate greater similarity. This makes it usable as a loss function in a
setting where you try to maximize the proximity between predictions and
targets. If either y_true
or y_pred
is a zero vector, cosine
similarity will be 0 regardless of the proximity between predictions
and targets.
Usage
loss_cosine_similarity(
y_true,
y_pred,
axis = -1L,
...,
reduction = "sum_over_batch_size",
name = "cosine_similarity",
dtype = NULL
)
Arguments
- y_true
Tensor of true targets.
- y_pred
Tensor of predicted targets.
- axis
The axis along which the cosine similarity is computed (the features axis). Defaults to
-1
.- ...
For forward/backward compatability.
- reduction
Type of reduction to apply to the loss. In almost all cases this should be
"sum_over_batch_size"
. Supported options are"sum"
,"sum_over_batch_size"
orNULL
.- name
Optional name for the loss instance.
- dtype
The dtype of the loss's computations. Defaults to
NULL
, which means usingconfig_floatx()
.config_floatx()
is a"float32"
unless set to different value (viaconfig_set_floatx()
). If akeras$DTypePolicy
is provided, then thecompute_dtype
will be utilized.
Examples
See also
Other losses: Loss()
loss_binary_crossentropy()
loss_binary_focal_crossentropy()
loss_categorical_crossentropy()
loss_categorical_focal_crossentropy()
loss_categorical_hinge()
loss_ctc()
loss_dice()
loss_hinge()
loss_huber()
loss_kl_divergence()
loss_log_cosh()
loss_mean_absolute_error()
loss_mean_absolute_percentage_error()
loss_mean_squared_error()
loss_mean_squared_logarithmic_error()
loss_poisson()
loss_sparse_categorical_crossentropy()
loss_squared_hinge()
loss_tversky()
metric_binary_crossentropy()
metric_binary_focal_crossentropy()
metric_categorical_crossentropy()
metric_categorical_focal_crossentropy()
metric_categorical_hinge()
metric_hinge()
metric_huber()
metric_kl_divergence()
metric_log_cosh()
metric_mean_absolute_error()
metric_mean_absolute_percentage_error()
metric_mean_squared_error()
metric_mean_squared_logarithmic_error()
metric_poisson()
metric_sparse_categorical_crossentropy()
metric_squared_hinge()