Computes the mean of absolute difference between labels and predictions.
Source:R/losses.R
loss_mean_absolute_error.Rd
Usage
loss_mean_absolute_error(
y_true,
y_pred,
...,
reduction = "sum_over_batch_size",
name = "mean_absolute_error",
dtype = NULL
)
Arguments
- y_true
Ground truth values with shape =
[batch_size, d0, .. dN]
.- y_pred
The predicted values with shape =
[batch_size, d0, .. dN]
.- ...
For forward/backward compatability.
- reduction
Type of reduction to apply to the loss. In almost all cases this should be
"sum_over_batch_size"
. Supported options are"sum"
,"sum_over_batch_size"
orNULL
.- name
Optional name for the loss instance.
- dtype
The dtype of the loss's computations. Defaults to
NULL
, which means usingconfig_floatx()
.config_floatx()
is a"float32"
unless set to different value (viaconfig_set_floatx()
). If akeras$DTypePolicy
is provided, then thecompute_dtype
will be utilized.
Examples
y_true <- random_uniform(c(2, 3), 0, 2)
y_pred <- random_uniform(c(2, 3))
loss <- loss_mean_absolute_error(y_true, y_pred)
See also
Other losses: Loss()
loss_binary_crossentropy()
loss_binary_focal_crossentropy()
loss_categorical_crossentropy()
loss_categorical_focal_crossentropy()
loss_categorical_hinge()
loss_cosine_similarity()
loss_ctc()
loss_dice()
loss_hinge()
loss_huber()
loss_kl_divergence()
loss_log_cosh()
loss_mean_absolute_percentage_error()
loss_mean_squared_error()
loss_mean_squared_logarithmic_error()
loss_poisson()
loss_sparse_categorical_crossentropy()
loss_squared_hinge()
loss_tversky()
metric_binary_crossentropy()
metric_binary_focal_crossentropy()
metric_categorical_crossentropy()
metric_categorical_focal_crossentropy()
metric_categorical_hinge()
metric_hinge()
metric_huber()
metric_kl_divergence()
metric_log_cosh()
metric_mean_absolute_error()
metric_mean_absolute_percentage_error()
metric_mean_squared_error()
metric_mean_squared_logarithmic_error()
metric_poisson()
metric_sparse_categorical_crossentropy()
metric_squared_hinge()