Formula:
for (x in error) {
if (abs(x) <= delta){
loss <- c(loss, (0.5 * x^2))
} else if (abs(x) > delta) {
loss <- c(loss, (delta * abs(x) - 0.5 * delta^2))
}
}
loss <- mean(loss)
See: Huber loss.
Usage
loss_huber(
y_true,
y_pred,
delta = 1,
...,
reduction = "sum_over_batch_size",
name = "huber_loss",
dtype = NULL
)
Arguments
- y_true
tensor of true targets.
- y_pred
tensor of predicted targets.
- delta
A float, the point where the Huber loss function changes from a quadratic to linear. Defaults to
1.0
.- ...
For forward/backward compatability.
- reduction
Type of reduction to apply to loss. Options are
"sum"
,"sum_over_batch_size"
orNULL
. Defaults to"sum_over_batch_size"
.- name
Optional name for the instance.
- dtype
The dtype of the loss's computations. Defaults to
NULL
, which means usingconfig_floatx()
.config_floatx()
is a"float32"
unless set to different value (viaconfig_set_floatx()
). If akeras$DTypePolicy
is provided, then thecompute_dtype
will be utilized.
See also
Other losses: Loss()
loss_binary_crossentropy()
loss_binary_focal_crossentropy()
loss_categorical_crossentropy()
loss_categorical_focal_crossentropy()
loss_categorical_hinge()
loss_cosine_similarity()
loss_ctc()
loss_dice()
loss_hinge()
loss_kl_divergence()
loss_log_cosh()
loss_mean_absolute_error()
loss_mean_absolute_percentage_error()
loss_mean_squared_error()
loss_mean_squared_logarithmic_error()
loss_poisson()
loss_sparse_categorical_crossentropy()
loss_squared_hinge()
loss_tversky()
metric_binary_crossentropy()
metric_binary_focal_crossentropy()
metric_categorical_crossentropy()
metric_categorical_focal_crossentropy()
metric_categorical_hinge()
metric_hinge()
metric_huber()
metric_kl_divergence()
metric_log_cosh()
metric_mean_absolute_error()
metric_mean_absolute_percentage_error()
metric_mean_squared_error()
metric_mean_squared_logarithmic_error()
metric_poisson()
metric_sparse_categorical_crossentropy()
metric_squared_hinge()