This loss function is weighted by the alpha and beta coefficients that penalize false positives and false negatives.
With alpha=0.5 and beta=0.5, the loss value becomes equivalent to
Dice Loss.
This loss function is weighted by the alpha and beta coefficients that penalize false positives and false negatives.
With alpha=0.5 and beta=0.5, the loss value becomes equivalent to
Dice Loss.
Usage
loss_tversky(
y_true,
y_pred,
...,
alpha = 0.5,
beta = 0.5,
reduction = "sum_over_batch_size",
name = "tversky",
axis = NULL,
dtype = NULL
)Arguments
- y_true
tensor of true targets.
- y_pred
tensor of predicted targets.
- ...
For forward/backward compatability.
- alpha
The coefficient controlling incidence of false positives. Defaults to
0.5.- beta
The coefficient controlling incidence of false negatives. Defaults to
0.5.- reduction
Type of reduction to apply to the loss. In almost all cases this should be
"sum_over_batch_size". Supported options are"sum","sum_over_batch_size","mean","mean_with_sample_weight"orNULL."sum"sums the loss,"sum_over_batch_size"and"mean"sum the loss and divide by the sample size, and"mean_with_sample_weight"sums the loss and divides by the sum of the sample weights."none"andNULLperform no aggregation. Defaults to"sum_over_batch_size".- name
Optional name for the loss instance. (string)
- axis
Axis (1-based)
- dtype
The dtype of the loss's computations. Defaults to
NULL, which means usingconfig_floatx().config_floatx()is a"float32"unless set to different value (viaconfig_set_floatx()). If akeras$DTypePolicyis provided, then thecompute_dtypewill be utilized.
See also
Other losses: Loss() loss_binary_crossentropy() loss_binary_focal_crossentropy() loss_categorical_crossentropy() loss_categorical_focal_crossentropy() loss_categorical_generalized_cross_entropy() loss_categorical_hinge() loss_circle() loss_cosine_similarity() loss_ctc() loss_dice() loss_hinge() loss_huber() loss_kl_divergence() loss_log_cosh() loss_mean_absolute_error() loss_mean_absolute_percentage_error() loss_mean_squared_error() loss_mean_squared_logarithmic_error() loss_poisson() loss_sparse_categorical_crossentropy() loss_squared_hinge() metric_binary_crossentropy() metric_binary_focal_crossentropy() metric_categorical_crossentropy() metric_categorical_focal_crossentropy() metric_categorical_hinge() metric_hinge() metric_huber() metric_kl_divergence() metric_log_cosh() metric_mean_absolute_error() metric_mean_absolute_percentage_error() metric_mean_squared_error() metric_mean_squared_logarithmic_error() metric_poisson() metric_sparse_categorical_crossentropy() metric_squared_hinge()